
BioReact: Visualization of Systems Biology Network

Haoran Yu, Zixiao Zhang

Fig. 1. The BioReact visualization. The network on the left hand side uses the force-directed layout and the one on the right hand side
uses the downward edge layout. Both of the two networks are visualized using the data generated from the backend with certain filters.
Users can enter the query in the panel on the right top corner. Search Result are shown in the right side bar in the list. The bar chart
on the bottom is to visualize the frequency of a species’s derived attribute in the displaying network.

Abstract—It is often difficult to visualize large networks effectively. In BioReact, we filter large systems biology network data by
querying to select partial network as the input for visualization. Each query is parameterized by a node name, the direction of graph
search, and the scope of the search. We present two layouts of the same network to clearly show network topology: a force-directed
layout expands neighbouring nodes to maiximize spatial separation between nodes and links, and a downward edge layout to preserve
a sense of unidirectional flow. Navigation of the network such as locating a particular node/link and linked highlighting between multiple
views optimize user experience.

1 INTRODUCTION

Systems biology is one research discipline that studies cause-effect
relationships between biological entities. For example, because both
the biological entities water and carbon dioxide are present, the
biological entity photosynthesis reaction can occur, which in
turn causes biological entities glucose and oxygen to appear. The en-
tity glucose can cause another biological entity an isomerization
reaction to occur, which then causes the biological entity fructose
to appear. The complex cause-effect relationships are visually repre-
sented as a directed graph, it is a conventional representation understood
by all researchers in systems biology. The biological entity is drawn as
a node in the directed graph, and a link is drawn between two biological
entity nodes if one is the cause of the other. An example of a small
directed graph is shown in Figure 2.

Researchers in systems biology are actively discovering new cause-
effect relationships and modifying existing relationships between bi-
ological entities, and making a publication on the discovery. Using a
small example to illustrate this idea, cell biologists have discovered a
new entity A, which is a protein molecule, after performing laboratory
experiments with nematode worm cells, but they do not know what its
function is. Systems biologist begin to study the function of A, and
after months of hard work, discovered that the entity A and a known
entity B together cause the entity C reaction to occur, and causes the
production of entity D in nematode worm cells. This discovery is pub-

Haoran Yu email: haleyyew@cs.ubc.ca
ZiXiao Zhang email: zhangzixiao03@gmail.com
Video Demo: https://youtu.be/OFnOUvHes9s

lished in a scientific journal. Using another small example to illustrate
this idea, researchers knew that the presence of entity A and entity
B together caused the entity C reaction to occur five years ago, but
recently systems biologists discover that for entity C reaction to occur,
entity D is also needed. This modification of relationships will also be
published as a journal article.

As the number of relationships published increases, how do re-
searchers keep track of the known relationships? It would be too
tedious to try to find all the published articles about a particular entity
and find its relationships with other entities within each article. There-
fore, the solution is that a dedicated group of people actively reads
newly published articles and store the new relationships in the database
in text format, or add the modified existing relationships to the database.
If this database is up-to-date, then the researcher can retrieve all stored
relationships from this database. Dedicated software then converts
the text format data to directed graphs, and the researcher is able to
visualize the large network of relationships between different entities.

The main problem for all types of network data, including systems
biology, is that the network is too large. If a researcher wants to find a
particular entity in the directed graph generated from the network data,
it is certainly difficult because the graph-drawing software can place
a particular entity anywhere in the network. Even if the researcher
decides to find the entity by inspecting each entity in the network, the
nodes and linked are so cluttered that it creates cognitive burden to the
researcher. The researcher may become frustrated and confused by the
large number of overlaps between nodes and links. Suppose that the
researcher finally finds the entity, it may still be difficult to visualize
that entitys relationships with other entities because the graph-drawing
software may place these entities far apart in space.

Our solution to effectively visualize large systems biology network



Fig. 2. An example of a systems biology directed graph. There are 7 nodes and 6 links. The 7 nodes correspond to 7 entities in the systems biology
cause-effect relationships network. As will be explained later, there are 2 categories of entities: a Species entity (encoded as circles) and a Reaction
entity (encoded as rectangles).

data is to implement an application that allows graph querying by entity
name, filtering of data, highlighting of parts of a directed graph, and
effective faceting between multiple views of the same data.

2 RELATED WORK

One brute force approach to visualize large network data is to explicitly
draw out each node and link by specifying the (x,y)-coordinates on
a two-dimensional space such that there are no overlaps and clutters.
If the user is interested in visualizing a small subset of large network,
which is usually the case, the user first selects the nodes and links to
be drawn, and then draw them out one by one. One existing tool to
draw systems biology directed graphs is CellDesigner [2]. The user
is presented with a blank page initially, and the user can place nodes
or links anywhere on the page. When the user is satisfied with the
directed graph drawn, the user can save the graph so that another user
can open it later in CellDesigner to visualize the graph. While it is very
convenient for the second user to visualize the saved graph, few users
are willing to take the initiative to spend the time and effort to create
the graphs using the network data.

A solution idiom to reduce clutter of large networks is the Topo-
logical Fisheye Views [3]. When the user is presented with the visual
representation of the network, the user can focus on one specific region
of the network, and the focused part of the network will be magnified.
The nodes and links that were too cluttered before focusing are now
more spatially separated, so that the user can clearly distinguish be-
tween nodes and links in the focused region. However, the computation
is expensive to rearrange spatial positions of nodes and linked, as pro-
posed by the algorithm. Also, since the user does not know initially
where a particular node is located, spatially separated nodes and links
can only be helpful to the user once that initial point of interest is
identified.

A professional network data visualization tool is Cytoscape [7], it
allows expert users to import network data and to perform analysis
on the data. The nodes and links can be edited, such as specifying its
position, its size, and color. The user can also perform query on the
network to display only parts of the complete network. The interface
allows annotation of nodes and links, inspect attributes associated with
each node and link, and filter based on attribute values. Although this
tool offers promising approach to visualize network data, its functions
are not tailored for specific datasets and therefore could be difficult
for a user who is not familiar with the attributes in the dataset being
visualized. For example, if the user wants to filter the network data by
attribute value but does not know what each of the attribute means, then
the user does not know how to start.

For a better user experience, the visualization tool needs to be tai-
lored for a specific dataset, so that all the functions in the tool have a
specific meaning to the dataset. VIGOR [6] is a tool designed to visu-
alize published works of authors. The interface permits graph querying,
has multiple coordinated views of data, summarizes the data being
visualized in a small panel, and allows data filtering. Our project aims
to build a visualization tool mimicking multiple features in VIGOR.
Our tool will also have features such as graph querying, multiple views,
and filtering to alleviate the burden of users visualizing a very large
systems biology network.

3 DATA AND TASK ABSTRACTIONS

3.1 Domain Background
We make a clear distinction of the two different categories of entities
in a systems biology network. A species is an entity that has a
corresponding real object. For example, a biological molecule and
a chemical ion are both species. A reaction is an entity that does
not have a physical object associated with it, it is merely a concept
to describe the consequence of the presence of species. For example
photosynthesis is a reaction that describes the consequence of having
both water and carbon dioxide physically present at the same time.
If we do not distinguish between the entity categories, each entity
is represented as a node in the directed graph, but depending on the
category of the entity that the node belongs to, the nodes have different
meanings in the directed graph.

A species node and a reaction node are always connected alternately
in the node-link diagram. A link always connects between a species
node and a reaction node, never between two species nodes or two
reaction nodes. This constraint is imposed by the researchers who
initially designed the systems biology network data architecture of our
datatset. Using this constraint, the nodes and links in the network form
a bipartite graph, where all the species nodes belong to one partition
and the reaction nodes belongs in the other.

3.2 Data Abstraction
The dataset we used is the BioModels Linked Dataset stored in the
European Bioinformatics Institute (EBI) database. This dataset was
originally stored in Systems Biology Markup Language (SBML) for-
mat, but was later transformed to the Resource Description Framework
format. By transforming the dataset to the Resource Description Frame-
work format, data can be queried using an interfacing linking the EBI
database. We have downloaded the entire dataset, which consists of
636 static files, we call each file a model.

There are a total of approximately 40000 nodes and 100000 links in
the complete network dataset, some models contain thousands of nodes
and links, while others contain only a few. The data schema for species
node, reaction node, and links are different, each contains around 10
attributes. However, we have selected only a few attributes to visualize.
A species node contains the id, name, and model id attributes (among
many that we decided not to visualize). A reaction node contains the id,
name, model id, as well as a list containing links associated with
the node. The id attribute is a unique identifier within each mode. Note
that multiple models can contain nodes with the same id. The name
attribute is the formal name of the entity assigned by the researcher, it
has a biological meaning, that is, the name of a species or a reaction.
The model id notes which model the node is stored in, this attribute is
very useful later, when we aggregate multiple models into one in out
visualization. The list attribute contains ids of links, the data schema
does not provide us the source node and the target node for each link,
therefore it took us some efforts to retrieve this information. The id,
name, and model id are all categorical attributes since the ordering of
the values have no specific meaning. Each link has 4 attributes, id,
model id, reference, and value. The id is a unique identifier of the
link in the model. The model id notes which model the link is stored in.



The reference is the species node id, i.e. it is one end of the link. The
value describes the quantity of the species participating in the reaction.
For example, in photosynthesis, 6 molecules of water participates in
each reaction. The id, model id, reference are categorical attributes,
and the value is a quantitative attribute.

The derived attributes for each link are the source and target node
id. In order to use the data visualization library, we need to explicitly
store a source and target for each link. However due to the way a link
is defined in the systems biology data schema, the source and target
cannot be directly retrieved from a link. We performed preprocessing
and precomputation of our dataset to find the source and target for
each link. While performing precomputation, we have also collected
additional statistics about the dataset. For each species node, we store
one derived attribute, appear count, which tells us how many times
does a speciess name appear in the complete network. This attribute is
ordinal.

3.3 Task Abstraction

Since we want to present the network data as node-link diagrams to
the researcher, we want the topology of the network to be clear. That
is, we do not want overlaps between nodes and links, and we do not
want to have clusters of nodes and links that are hard to discern. The
only way to achieve this is to avoid displaying the complete network.
Since each researcher is only interested in his or her own research
domain, displaying data that are not relevant to the researchers field is
unnecessary. Therefore we must allow the researcher to query for parts
of the network that he or she wants to see, and only display that part of
the network.

To query the network, we define additional parameters that the
researcher must specify before querying. The parameters are the name
of the species, the scope of the partial network, and the direction
of the query. The name is the point of interest in the network, when
the researcher searches for a name, all species nodes having that name
are returned. However, it is useless to visualize single nodes, the
researchers goal is to find out the relationships of the queried entity with
other entities in the network. Therefore we need to display all adjacent
nodes connected to the queried node via a link. The scope parameter
specifies how far in the relationships cascade does the researcher wants
to see. For example, the scope is 1 if the queried node and its immediate
neighbours are being visualized. The scope is 2 if the queried node, its
immediate neighbours, as well as the immediate neighbours neighbours
are being visualized. To explain the concept of scope in another way,
a queried entity and all entities that directly cause the queried entity
(defined EU) as well as all entities that are directly caused by the queried
entity (defined ED) form the scope 1 visualization. For scope 2, all
entities caused by EU and ED as well as all entities that cause EU and
ED, are included in the visualization as well. The direction parameter
filters out parts of the entities set returned within the scope. The
direction parameter takes values up and down. If up is specified, only
the entities set EU and the queried node are returned. If down is
specified, only the entities set ED and the queried node are returned.
To put it in simple terms, if up is specified, we only see all entities
that cause the queried entity within the scope. Similarly, if down is
specified, we only see all entities that are caused by the queried entity
within the scope. The parameters that we define for querying is due
to the network being a directed graph, which stores the cause-effect
relationships. Naturally, as the set of nodes are returned, all links that
connect the nodes are also returned.

Once the partial network is being displayed to the researcher, we
permit navigation of the network. For example, browsing for the
information of each node or link, locate a particular node or link in
the partial network, and explore each nodes neighbours. To locate a
series of consecutive links, we locate the path from the first node to the
last node in the set of consecutive links. For example, the researcher
may want to know for a given queried node, how does the queried
node’s corresponding species undergo a series of reactions to become a
different species? To use a concrete example, suppose that species A
cause reaction B, reaction B cause species C, species C cause reaction
D, and reaction D cause species E. We can locate the path from A to E

Table 1. What-Why-How analysis of BioReact
What: Data Around 40000 nodes and 100000 links

in the complete network, distributed
across 600 models. Species Node and
Reactions node with attributes name, id
and etc., links with attributes source, tar-
get, value.

What: Derived The frequency that a species name ap-
pear in the network. The source and
target of a link.

Why: Task Node-link diagram. Query for specific
node by name. Browse, locate and ex-
plore parts of the network. Show the
topology of the network.

How: Encode Circle and rectangle for species and re-
actions. Line with arrow to denote the
direction; color and saturation for dif-
ferent group. Stroke width of the line
for value of reactants. Label by click
for specific information. Bar chart for
derived statistics.

How: Reduce Query; Filter; Dynamic aggregation.
How: Manipu-
late

Navigate: scroll, drag and translate. Se-
lect: check details, change node size and
show path.

How: Facet Linked Highlighting: button on the side
bar, ordinal bar chart.

via the consecutive links linking between species and reaction nodes in
between. For a systems biologist, this is an analysis task that can be
achieved using our visualization tool.

4 SOLUTION

In this section we describe our visualization solution and analyze it
using the What-Why-How framework from [5], Table 1 provides the
summary. Our visualization design can be generally divided into 3
parts: network, interactions and bar chart.

4.1 Networks
Since we want to clearly present the topology of the network, it would
be desirable to display multiple layouts of the same partial network, and
let the researcher decide which layout is better to perform the analysis
tasks. We presented two techniques for drawing directed graphs, each
produces a different style of layout. The first technique is physics
simulation to maximize spatial separation of nodes and links within a
constrained space. The technique that we applied borrows ideas from
circle packing in Wang et al. [9], which attaches a spring to the node
and pulls the node towards a center while avoiding collision between
nodes. We call this layout the force-directed layout.

The second technique we applied is IPSEP-COLA [1], it draws
Sugiyama-style directed graphs [8]. In an older technique proposed
by Gansner et al. [4], determining the optimal layout of a directed
graph is broken into four steps. The first step partitions each node into
different levels, where each level is separated by a fixed length of y and
all nodes in the same level have the same y-coordinate. The optimal
partition is computed by minimizing the length of the link connecting
two adjacent nodes, subject to the constraint of a minimum length.
The second step assigns the order of nodes in each level, minimizing
the edge crossings between levels. The third step specifies the (x,y)
coordinates of each node, while maximizing the possibility of drawing
straight edges between levels. Finally, the edges are drawn. For each
edge, define bounding boxes and the edge has the freedom to move
anywhere within the bounding boxes. The IPSEP-COLA technique
uses a different approach, it uses gradient projection to minimize a
stress value, where the stress value is how far away the current layout
deviates from an optimal layout subject to a number of predefined
constraints such as minimizing edge crossings. We call this layout the
downward edge layout.



Our design choice of including both the force-directed layout and
downward edge layout is justified below. We filter the data by users
query species name and the species name must be the focus in the
visualization. The force-directed layout is to put the node in the centre
and make the structure radial, with distance to denote the relationships
between other nodes and the center node. The downward edge layout
is to make the network into a hierarchical model such as a tree in order
to show lineage and parent-child relationships. Also, this layout has
arrows of edges pointing in the same direction, thus creating a strong
sense of flow from top to bottom. This organized layout also allows
clear visualization of paths.

Since nodes have 2 categories: species and reactions, we use the
circle and rectangle mark to represent the species and reaction nodes
respectively. Links not only indicate the flow direction between nodes,
but also give out the quantity information in the reaction. Intuitively,
we use the stroke width of the link to denote the quantity. Following
the standards in systems biology, we add fixed size arrow mark to the
link to avoid the overlap problem (that is, arrow size increase as the
width of the line rise due to inheritance).

The data has an attribute model id, thus we use colour and luminance
to group nodes belonging to different models (because the number of
the models in the query result is usually below ten). The nodes in
the same group will be clustered together. The force-directed layout
looks like a flower with each group as the petal, while the downward
edge has groups of leaves connected to the root node. Both of the two
layouts face the problem of overlap. The downward edge layout face
the problem more severely in the horizontal axis when number of nodes
per level becomes larger.

4.2 Interactions

In a network with large number of nodes that look similar, it is easy
for the user to feel confused without any highlighting. Given that
the list of node name is shown in the search result side bar, we use
linked highlighting to reflect changes to a node in the network panel
corresponding to clicking the node name in the side bar. Once an item
in the result list is clicked, its color is changed to blue. While it is not
reasonable to use the colour channel again for a node, we consider the
usage of size instead. The purpose of the interaction is to help user
find out certain species or reactions location in the network. We extend
the the radius from 4px to 8px for the circle node as the species name
is clicked in the list. And we extend the width and the height of the
rectangle node from 8px to 15 px as the reaction name is clicked in the
list. In the reverse interaction, clicking a node will enlarge the node
and also link the change of colour of the item in the result list.

To ensure that full details of each node is displayed in the network
visualization, we designed a pop-out label triggered by the clicking of a
node to show the id, name, model id and whether the node is a species
node or a reaction node. To mark the path between a pair of nodes, we
mark the path with colour red which is in contrast with the original
link colour grey. In general, the interaction in the visualization assists
the user on building an idea of the relative location of the nodes in a
large-scale network.

We retain the colour of items in the result list as we switch one layout
to the other, if we are still visualizing the same network data (i.e. the
same model). The reasoning is that the users memory of highlighted
items in the result list must be retained because he or she wants to make
comparisons between the two layouts of the same network data.

4.3 Bar Chart

We encode the derived attribute appear count as a bar chart, the number
of times a speciess appears in multiple models is the bin, and the height
of a bar is accumulated for all nodes satisfying the appear count value.
For instance, the bar with attribute value of 2 as the label and a height
of 10 means that 10 species in the current visualized network exists
in 2 models. As a bar is clicked, all species items that belong to the
category are highlighted in red in the sidebar.

5 IMPLEMENTATION

We divided our work into two distinct categories, implementing the
backend engine for answering queries and implementing the frontend
interface for data visualization.

5.1 Backend Engine (Haoran)
The dataset is stored in XML format, however the JSON format is
required to effectively import the data to a web service. The dataset was
parsed using python scripts. The parsed data serve as the objects stored
in our pseudo-database. We build indexes of the data by computing
statistics - for each species name, find all models that contain the species
name, and create a key-value pair using the species name as the key
and the list of models as the value. To answer a query of a specific
species name, find the key-value pair in the index. From the values in
the key-value pair, we are able to determine which JSON models to
search, whereas if we did not have an index we need to search over 600
models for every query.

Once a queried node is located in a model, perform a breadth first
search in the direction specified by the parameter, direction. For ex-
ample, if direction is up, then reverse the direction of all the arrows
and perform breath first search using the modified graph. The scope
parameter limits the depth of the search, once the search reaches the
specified depth, stop the search and return all nodes and links traversed
so far. To answer a query of path between two nodes, construct an adja-
cency matrix using the partial network currently being visualized, and
then run Dijkstras single-source shortest path algorithm. The algorithm
return the shortest path between the pair of nodes. If there is no path
between a pair of nodes, return an error which is caught at the frontend
script.

To aggregate multiple partial networks returned by the query into
a single network, we simply aggregate the N query species nodes
present in each of the N models returned in the query into a single node.
For each link connected to the original species node, change the links
connection from the original species node to the new aggregated species
node. This operation guarantees that if all the nodes were connected
to a models partial network, they are still connected in the combined
network.

5.2 Frontend Visualization
The BioReact was implemented as a Web Application frontend us-
ing HTML5, CSS3 and Javascript. interface.html includes the
HTML elements, CSS3 elements and Javascript code we wrote for
UI construction, data processing, user interaction and visualization
functions. interface style.css includes part of the attributes of
the UI widgets.

BioReact utilizes libraries and framework aiming to follow the trend
of the frontend development, and providing a robust and aesthetic sys-
tem for visualization. (i) We used Bootstrap 3 framework to set up
the responsive UI of the system, with a navigation bar at the top, a main
view with 3/4 width of the window and a side view with 1/4 width on
the right. Widgets like input bar and buttons were mainly self-designed.
(ii) We used jQuery to handle the data, optimize the manipulation of
the DOM , and extend the CSS selector. (iii) For data visualization,
we mainly used d3.js to generate the SVG graph. D3 is a powerful
javascript library with various existing extensions. We carefully chose
some framework and implemented them with modifications to adapt to
the visual encoding prototype. Here are the additional frameworks for
visualization we used in the project:
cola.js and cola-downwardedges.js: cola.js is an open-source

javascript library for arranging the HTML5 documents and diagrams
using constrained-based optimization techniques. In this project, we
chose the downward edges layout with constraints from Cola.js to make
our network more organized. We modified the framework and added
visual encoding to distinguish between species and reactions, as well
as handling the node on-click event.
d3v4-selectable-force-directed-graph.js and

d3v4-brush-lite.js: We utilized the colour encoding, se-
lection and drag specification, so as to make our force-directed layout
more interactive. We added the information label, click event, dynamic



Fig. 3. The meaning of each widget in the panel.

Fig. 4. There are four numbered screenshots in this figure. Screenshot
1-3 are the network with force-directed layout. 1 shows the specific detail
label triggered by click event. 2 shows the size change of the node.
3 shows the appearance change by drag event. Screenshot 4 is the
network shown when user switches to the downward edge layout.

shape and size change to the original code. And implemented functions
to allow the interaction between the networks and other elements in the
UI.

Zixiao is mainly responsible for implementing the visual encoding
of the network data. Zixiao also worked on the development of the
UI and part of the user interaction such as dynamic node size change.
Both of the authors contributed to the general design of the interface
and the integration of the codes. Haoran fixed bugs in the front-end and
implemented path highlighting as well as downward edge layout.

6 RESULTS

The proposed visualization is designed to present a more time-saving
way to check the necessary information relevant to the systems biology
domain. Our targeted users are mainly learners who want to look up
the relevant details in the database and junior researchers who need a
tool to help them set up their research plan. In addition, considering the
flaws in the database, we try to make the tool helpful for administrators
to do modifications on the database.

6.1 Scenario Walk-Through
Our system is a search engine facing a static database. User needs to
type in the species name, direction of traversal and search scope as the
query parameters. The direction of traversal take on the value of ‘up‘
or ‘down‘. Species name is the name of the species the user obtained or
planned to synthesize. User can choose from the two layouts of network
visualization. The user can combine all the models in the dropdown list
by clicking Combine Models. See Figure 3.

For the scenario of use, let‘s suppose that Jack is a student in bio-
chemistry, trying to figure out what GTP can be used for. So he types
in GTP, ‘down‘ and a scope number. After the backend engines returns
the result data, he can look through the combined model network or
look into the single model network.

In the combined model case, he can choose from two layouts. In the
force-directed layout, a radial network with the node in the centre refer-
ring to GTP and all other nodes clustered, Jack can easily distinguish

Fig. 5. In this single model view, 3 nodes (2 species and 1 reaction)
were marked by the user with bigger size. One node was marked but
the user finally found it useless and canceled the mark. In the meantime,
the marked ones were highlighted in blue and the canceled one was
highlighted in light yellow in the side bar.

Fig. 6. Example of mark on the path using red color, indicated in the
green circle.

Fig. 7. The bar chart link-highlighted the species in the result list.



the difference by colour and luminance. By clicking the node in the
network or the buttons on the side bar, Jack can grasp the relative loca-
tion of each node in the network. Jack can zoom in, drag and translate
nodes to find a better perspective for himself to observe the layout. In
the downward edge layout, Jack have fewer things to do because the
layout is well-organized and constrained. He can simply follow the tree
downwards to find out the paths for the cascade of reactions using GTP.
See Figure 4.

In the single model case, Jack inspects an individual node in the
network, he can click it which makes the node bigger. If the species
is meaningless for him, he simply clicks the blank area and the corre-
sponding node will shrink back to the original size. On the contrary,
he can proceed to the next species by clicking the node and gradually
highlight a path that he wants to study. He then proceeds to perform
research on each of the species and reaction nodes in the path he high-
lighted. If he finds one of the species interesting and wants to study it in
more detail, he can enter that speciess name in the query and visualize
the network for that species. See Figure 5.

In both two cases, Jack can mark a path between two nodes by
clicking their ids in the side bar and press the Show Path button. See
Figure 6. Also, by clicking a bar labelled ‘2‘ with height 3 in the
barchart, Jack can check what those 3 species are in the side bar. See
Figure 7.

In addition, all the entries he has already browsed were marked
in light yellow to avoid repeated work in checking. Jack can switch
between the two layouts, while still maintaining the highlighted items
in the sidebar.

6.2 Evaluation

We preliminarily present our system to potential student users for
feedback. Two Phd students from ECE BME laboratory approved our
work on reducing the complexity of the network and gave positive
feedback on the clarity of the topology. However, they pointed out
that the downward edge layout seems better than the force-directed
layout for the structure that suits their cognitive system. They also
suggest to add visual encoding into the single model view, e.g. use
different shapes to indicate the start node and end node. They reminded
us that the overlap problem needs to be carefully tested under various
circumstances, especially with the a huge number of nodes.

Two graduate student from Chemistry said that our visualization is
designed properly but the data representation in our system remains to
be optimized for practical use. They argued that the ids shown in the
side bar may be useless in some cases because user may not be familiar
with the ids. A node-link diagram for each of the specific reaction node
needs to be implemented, so as to give the user a deeper idea of what
each reaction is used for. For the user experience of the system, the
monotony of color in single model view was also mentioned.

7 DISCUSSION AND FUTURE WORK

7.1 Limitation of Visualization

Time constraints lead to the limitation of our evaluation, but problems
are quite clear given peers advice and our self evaluation. One obvious
limitation lies on the interaction. Although some users may feel well to
have parameters used to configure the network, others wants to avoid
the compulsory configuration procedures. Another limitation is the
incompleteness of the downward edge layout. Even if it is designed
to be concise, we still find the necessity to provide more interactions
as what we did in the force-directed layout. For example, allowing
zooming in and out because zooming is especially efficient when the
level number is greater than 3.

The limitation on the data is intrinsic. In our development process,
we pretended to display the names of the species on the side bar. How-
ever, it is not practical because some species do not have a name in the
database. Given the feedback, we display both the id and name in the
result list. In the test process, we find that error or absence of a value in
the database lead to the ambiguity and affect the understanding of the
user.

7.2 Limitation of Browser
Due to the processing ability of the browser, the performance of our
visualization falls rapidly when the parameter scope number increases.
This issue exists in three major browsers, Chrome, Safari and Firefox.
For instance, the graph is generated slowly and latency in the interaction
is quite obvious when the level comes to 3, with 600 nodes and links.
The specifications of our design are severely limited by this factor even
if the quality of the visualization is the same.

One limitation concerned with the front-end limitation is that the
data we used are static which is permanently stored in our local sever.
However, in a more general case, there must be a backend to support
the frontend. Lastly, there must be a large number of changes on the
structure of the system in order to integrate them in a server.

7.3 Lessons Learned
In this project, we apply the visualization idioms in the books to provide
a reasonable solution to a domain problem. One lesson we learned is
carefully choose visual encoding method to avoid ambiguity. Facing
thousands of data, each decision on colour encoding was complicated.
So we applied efficient reduction in data size and adjusted the encoding
method accordingly. The other lesson is to have a meticulous plan at the
beginning. We changed our visual encoding method in the process and
gave up some ideas which we used to think helpful for users. However,
this costs us a lot of time and interfered with the original design of the
project. Instead, we must talk to the targeted users first with multiple
applicable design choices to our final design.

7.4 Future Work
As we mentioned before, the most urgent work to do is to optimize the
visualization performance given different queries. So we must carry
out the tests in the extreme conditions to see whether the visualization
is feasible or not. For real applications, we need to allow the synchro-
nization of the data on the sever end and front end, for example the data
used in the visualization can be directly modified on the sever. And
we cannot ignore our original purpose to offer a tool to correct missing
data in the database. So we plan to develop an interface which allows
the administrator to directly change the data from the front-end. In
addition, data processing needs to fulfill the requirement of the user.

8 CONCLUSION

In this paper, we started from the analysis of terms and relationships
of data which are commonly used in the work of systems biology
and related domain. And we made a summary on the advantages and
disadvantages of the current visualization tool. We emphasized the
problem of the clutter when the visualization is applied to a huge dataset.
Then, we proposed our solution to simplify the problem and offer the
network partially according to the users’ query.

In our project, we presented BioReact, a tool which provides users
such as students and researcher with a partial network related to the
EBI database. For the visualization, we implemented two layouts in
the parallel relationships to satisfy the possible user preferences. In
the visual encoding of the data, we carried out multiple trials to bring
all the factors in our design to the balance. To assist the users to
understand our network, we designed several interactions including
linked highlighting and path highlighting. We hope our targeted user
can use our visualization system in the future.

REFERENCES

[1] T. Dwyer, Y. Koren, and K. Marriott. Ipsep-cola: An incremental pro-
cedure for separation constraint layout of graphs. IEEE Transactions on
Visualization and Computer Graphics, 12(5):821–828, 2006.

[2] A. Funahashi, Y. Matsuoka, A. Jouraku, H. Kitano, and N. Kikuchi. Cellde-
signer: a modeling tool for biochemical networks. In Proceedings of the
38th conference on Winter simulation, pp. 1707–1712. Winter Simulation
Conference, 2006.

[3] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for
visualizing large graphs. IEEE Transactions on Visualization and Computer
Graphics, 11(4):457–468, 2005.



[4] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[5] T. Munzner. Visualization analysis and design. CRC press, 2014.
[6] R. Pienta, F. Hohman, A. Endert, A. Tamersoy, K. Roundy, C. Gates,

S. Navathe, and D. H. Chau. Vigor: Interactive visual exploration of graph
query results. IEEE transactions on visualization and computer graphics,
2017.

[7] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software environ-
ment for integrated models of biomolecular interaction networks. Genome
research, 13(11):2498–2504, 2003.

[8] F. Wakamori, S. Masui, K. Morita, and T. Sugiyama. Layered network
model approach to optimal daily hydro scheduling. IEEE Transactions on
Power Apparatus and Systems, (9):3310–3314, 1982.

[9] W. Wang, H. Wang, G. Dai, and H. Wang. Visualization of large hierarchical
data by circle packing. In Proceedings of the SIGCHI conference on Human
Factors in computing systems, pp. 517–520. ACM, 2006.


	Introduction
	Related Work
	Data and Task Abstractions
	Domain Background
	Data Abstraction
	Task Abstraction

	Solution
	Networks
	Interactions
	Bar Chart

	Implementation
	Backend Engine (Haoran)
	Frontend Visualization

	Results
	Scenario Walk-Through
	Evaluation

	Discussion and Future Work
	Limitation of Visualization
	Limitation of Browser
	Lessons Learned
	Future Work

	Conclusion

