
Visualization of Systems Biology Reaction Net-

work

Haoran Yu and ZiXiao Zhang

Introduction

Systems biology researchers store their data in a conventional, machine-
friendly format to permit information sharing across different user groups
performing different tasks. One format, Systems Biology Markup Language
(SBML), is a standard for storing quantitative models to simulate reaction
between multiple entities also known as species. The interaction between
species often form a complex network, which is difficult for a human user
to interpret using the SBML language alone, therefore multiple visualization
tools have been developed in the past, such as Cytoscape, to present a more
user-friendly environment to analyze interaction network data in systems bi-
ology. However, current tools are mostly targeted to expert researchers with
domain knowledge of the data, new users that have limited domain knowl-
edge cannot make good use of these tools. Moreover, even the expert users
cannot interpret distributed data across different data models easily. There-
fore it is our job to build a tool that can visualize systems biology network
data in a way that permits non-expert users to easily find and discover the
reaction or species of interest from a complex network, and permits expert
users visualize a network that consists of data from multiple sources.

Task and Data Abstraction

Our visualization task is to present network data to the user, and enable
an interface to discover the topology of the network as well as paths within
the network. The network is a directed graph, consisting of nodes of type
reaction and species. A reactant species is a node that has an edge pointing
into a reaction node, and a product species is a node that has an edge from a
reaction node pointing into it. The product species may then act as a reactant
species for another reaction, thus forming a complex network.

The dataset we will be using is the BioModels Linked Dataset stored
in the European Bioinformatics Institute (EBI) database, originally stored
in SBML format, but was transformed to Resource Description Framework

1



(RDF) for easy data storage and retrieval. The SBML data schema con-
sists of 14 tables, the most relevant tables for this project are SBMLModel,
Compartment, Species, and Reaction. The SBMLModel data consists of 18
attributes, Compartment 5, Species 9, and Reaction 11. Since BioModels is
a subset of the data stored in the EBI database, it contains only 636 files
stored in RDF. However, each file is an independent data model and forms
a stand-alone network. Therefore one of our tasks is to integrate these 636
networks together as a connected network. We note that the RDF version
of the data is more table-oriented, whereas the original SBML store network
data without spacial coordinates. It is unclear how many nodes and edges,
or how many table items are in the dataset; this number can only be figured
out once we parse the RDF files. The tool that we build will permit users to
locate and browse reaction of interest from the integrated network presented
in a 2-dimensional space.

Moreover, it is also possible for our tool to present an interface to permit
users to annotate the nodes and edges in the network, however this is left as
an extra feature in the end.

Visual Encoding

Due to the complexity of the SBML schema, we cannot encode every single
attribute as visual channels in our tool, we aim to select a subset of the at-
tributes to visualize that are the most relevant to the task abstraction. We
encode the SpeciesReference attribute of the Reaction table as the edges in
the network, the SpeciesReference links between a Species and a Reaction.
Each distinct Species item in the Species table is encoded as a node in the
network, and each distinct Reaction item in the Reaction table is similarly
encoded as a single node. It is possible for a Species or Reaction to appear
multiple times across the 636 models, and this allows the different indepen-
dent networks to link together.

In addition to the network, we permit navigation of the network. The
different parts of the network can be highlighted by seletion, zoomed in by
user interaction, and can be viewed in a separate window with more detailed
information about the selected item. For example, the user can select a node
of type Species, and request for all attribute information stored in the Species
table. The user will be directed to a separate window, which displays the
original RDF data.

We use the color channel to encode the origin of the data, i.e. which

2



of the 636 data models the item comes from. It is impossible to use 636
distinct colors, therefore we only allow coloring as items are highlighted. For
example, when the user selects a Reaction node, all Species nodes that are
connected to the Reaction are also highlighted. Each Species is colored using
categorical coloring scheme, according the data model the Species is from.

We permit filtering of the network. A facet of the multi-window view
will be allocated for dynamic generation of slide bars that encode the Stoi-
chiometry attribute of the Reaction table. As the network is navigated and
zoomed in, the slide bars update dynamically to reflect the distinct species
present in the visible part of the network, each slide bar permits value selec-
tion from the minimum value to the maximum value of each Species. As the
values are changed, the network updates dynamically, displaying only the
reaction paths that are possible with the specified quantity of each Species.
This function is especially useful for scientists performing lab experiments.
The scientist may only have a limited quantity of a specific Species avail-
able, and would want to discover what reaction paths are possible using the
given quantity. The scientist may select a start and end node to visualize all
possible reaction paths.

Finally, we also permit querying the data item in the network. As results
are returned, we permit linked highlighting in the network window. If time
permits, we will encode more attributes as channels in the visualization tool.

Implementation

We will be using D3.js as our software to develop the tool. The main challenge
of this project is to effectively display the network in a 2-dimensional space.
We plan to use the 4-stage implementation as presented in GraphViz. The
GraphViz technique is sufficient to achieve our visualization tasks in our
design.

Timeline

Haoran

(1) 5 hours - extract and parse RDF, design data structure that can be
encoded as a network

(2) 30 hours - encode attributes as visual channels

3



(3) 30 hours - implement user interactive interfaces

(4) 5 hours - fix errors and ensure compatibility

ZiXiao

(5) 5 hour - prototype D3 interface for network data

(6) 30 hours - implement algorithm to draw network data using GraphViz
technique

(7) 30 hours - add support or data querying, network filtering and path
generation

(8) 5 hours - fix errors and ensure compatibility

4


