
Visualizing the Bias-Variance Tradeoff

Halldor Thorhallsson Gursimran Singh
halldorb@cs.ubc.ca msimar@cs.ubc.ca

Fig. 1: Overview of the two playgrounds for explaining the bias-variance tradeoff in learning algorithms. Left: Polynomial
Regression Playground; right: K-Nearest Neighbor Playground.

Abstract—This paper describes a visualization tool, aimed at novice machine learning students, for helping them obtain an intuitive
understanding of one of the most fundamental concept in Machine Learning: The Bias-Variance Tradeoff. The tool uses two simple
learning algorithms Polynomial Regression, and K-Nearest Neighbours, to cover the tradeoff for both classification and regression
tasks. Users are able to adjust the hyperparameters of their models and the characteristics of the data itself. A change in any single
parameter results in an automatic update to all visualisations that display in an intuitive way how the user’s choice of parameters affect
the tradeoff. Both Polynomial Regression and k-Nearest Neighbours playgrounds are available online at [34] and [38].

Index Terms—Machine Learning, education, interactive explainables

1 INTRODUCTION

Machine learning is at the forefront of many technological break-
throughs of the last decade like speech recognition [15, 28], computer
vision [7, 20], language understanding [33, 37] and driverless cars [32].
Since these breakthroughs happened in a relatively short span of time,
existing pedagogical methods were inadequate to generate enough skill
power, creating a demand-supply gap [17]. In the recent years, we
have seen interesting attempts through MOOCs [27], blog articles [12]
and intuitive visualizations [16, 36] to cover this gap. Despite these
resources, students often lack an intuitive understanding of the nuances
of various machine learning concepts and algorithms, which behave
quite differently with changing parameters.

For instance, nearly all machine learning algorithms allow a user to
control the complexity of the model through parameters. The practi-
tioners want their model to be complex enough to capture sophisticated
relationships in the data while keeping it simple to prevent noise from
affecting the outcome. This leads to a fundamental tradeoff known as
the bias-variance tradeoff which is of paramount importance for optimal
choice of the hyperparameters for the learning algorithms. Numerous
machine learning resources have attempted to explain this fundamental
concept which, albeit well presented, often lack the ability for a student
to gain an intuitive understanding.

We argue that this lack of understanding is primarily due to the
inability to play around with the parameters of algorithms. In order
to give an intuitive understanding of the bias-variance tradeoff, we
propose to develop interactive visualizations for two classical machine
learning algorithms. It will allow students to tinker and experiment
with the algorithms and their parameters, and in the process students
will develop a strong understanding of the various machine learning
concepts like the bias-variance tradeoff.

Our tool, an interactive visualisation system, is aimed at demystify-
ing the bias-variance tradeoff for aspiring ML professionals. The tool
is twofold, where the two parts focus on different machine learning
algorithms and have slightly different interactive visualizations as to

explain the bias-variance tradeoff in a comprehensive manner. The
two, relatively simple, machine learning algorithms are polynomial
regression models and K-nearest neighbours (KNN). The reason for
picking these two particular algorithms is that they are simple and
intuitive and encompass both regression and classification problems.
Users taking their first steps in machine learning should therefore al-
ready be familiar with the algorithms or pick them up fairly quickly
with the supplementary text accompanying our tool. The algorithms
themselves are not the real focus of our tool, but rather understanding
how adjusting hyperparameters affects the bias-variance tradeoff. Our
system is not only meant for tinkering with parameters in a so-called
playground, but is meant to provide a guided experience through text
and interactive visualizations where by the end of the process the user
should have an intuitive understanding of the bias-variance tradeoff.

The remainder of this paper is structured as follows. In Section
2 we will go over selected previous work done on visualizing the
bias-variance tradeoff and visualizing fundamental machine learning
concepts in general. We will abstract the data and tasks for the problem
we are trying to solve with our visualization in Section 3. In Section
4 we will go over our visualization tool and how it solves the tasks
mentioned in Section 3. In Section 5 we will go over the implemen-
tation details of our tool. Section 6 conducts a walkthrough of our
visualization tool explaining a few use-cases. In Section 7 we will
reflect on our tool and go over future work. Finally, Section 8 contains
our conclusion.

2 RELATED WORK

Many articles [5, 12, 22, 36] explain basic concepts in machine learning
like bias-variance tradeoff, linear regression and k-Nearest neighbours.
These, albeit, well written and supplemented with static visualizations,
lacks interactivity. There is no facility for students to play with the
parameters and get a sense of how the algorithms behave differently.
For instance, the relationship between KNN’s hyperparameter k and

the bias-variance tradeoff has been explained in great detail by Scott
Fortmann [12] in his online article. Similarly, [41] provides an intuitive
explanation on the interpretation of RMSE loss for linear regression.
A very nice intuitive and animated visualization story has been made
for decision trees by Stephanie Yee and Tony Chu [8]. However, due
to lack of interactivity and user’s ability to see how algorithms behave
with different parameters, the articles do not give a good intuition and
provide limited understanding.

Other articles [18, 24] supplement text with some level of interactiv-
ity. This allows the user to explore concepts beyond what is presented
in static visualizations. A recent journal, distill [10], presents excellent
articles on machine learning and allow interactivity using a variety
of controls. For instance, the article [14] explains the importance of
momentum in gradient descent and illustrates it in the case of poly-
nomial regression. However, many of these articles [6, 25, 26], focus
on advanced concepts like neural networks and does not touch upon
the fundamentals. Another set of articles, use similar ideas of limited
exploration and guided explanations to explain basic concepts like prin-
cipal component analysis [31], image kernels [29], and ordinary least
squares [30]. We direct the reader to [35], which presents a list of such
articles. However, none of these articles cover the fundamental concept
of bias-variance tradeoff.

Also, all of this work only allows limited interaction with the aim
of telling a particular story. These are not presented in a playground
setting and does not allow a full exploration of concepts by changing
multiple parameters. AISpace [19], provides interactive Java applets for
teaching and exploring basic concepts in Artificial Intelligence. These
tools take a playground kind of approach and allow experimentation
beyond a constrained and guided setting. The validity and effectiveness
of AISpace in teaching artificial intelligence has been established in [1].
Another interesting work in this domain is TensorFlow Playground [11]
which provides an effective tool to explore and tinker the various pa-
rameters of a neural network and inspect its output. Both these tools are
effective for exploration but does not touch upon bias-variance trade-
off. We take these as inspiration to design a playground for teaching
bias-variance tardeoff to students.

3 DATA AND TASK ABSTRACTIONS

Munzner [23] presented a high-level framework to reason about visu-
alizations. It asks three questions pertaining to visualizations - what
data is to be presented, why you want to visualize, and how the visual
encodings and interaction idioms will solve the problem. We discuss
the what and why questions in section 3 and how in Section 4.

Moreover it suggests thinking these two questions in terms of
domain-specific and abstract terminology. The domain-specific ter-
minology discusses in terms of specific data-items we want to visualise
and specific objectives we want to explain, while the abstract termi-
nology discusses these in terms of generic visualisation concerns and
idioms, without getting into specific knowledge of the domain.

We present the what and why questions in terms of domain-specific
and abstract terminology. The former talks about the specific data
and objectives in domain terminology, while the later talks in generic
visualization terminology. The generic terminology helps us to compare
our specific visualization problem with existing solutions and think
about the space of vis design idioms systematically.

3.1 Domain description

The bias-variance tradeoff [13] is a fundamental tradeoff between re-
ducing the two sources of errors due to which learning algorithms fail
to estimate the target function (or generalize on unseen data). The
expected generalization error of a learning algorithm can be written as
the sum of these two sources of errors, namely the bias and variance.

Consider an independent variables denoted by X and a dependent
variable denoted by Y which are related to each other by a relation like
Y = f (x)+ ε . Using a learning algorithm, we estimate a model f̂ (x) of

f (x), whose expected error can be written as

Err(x) = E((Y − f̂ (x))2)

Err(x) = (E(f̂ (x)− f (x)))2 +E((f̂ (x)−E(f̂ (x)))2)+σ
2
ε

Err(x) = Bias2 +Variance+ IrreducibleError

(1)

The first term is called bias, which pertains to erroneous simplifying-
assumptions in the learning algorithm. The second term is the variance,
which corresponds to sensitivity to inputs (and hence noise) in the
training data. The third term is irreducible error, which corresponds to
noise in the true function itself. An algorithm with high bias might not
have enough flexibility to model the target function f (x) (underfitting).
On the other hand, a model with high variance, tends to model the
random noise in data along with the target function (overfitting).

3.2 Domain task
The main goal of our visualization tool is to help students gain an intu-
itive understanding of the bias-variance tradeoff in learning algorithms.
Given a set of data, we wish students should be able to experiment and
try machine learning models with different complexity. On one hand,
they should get visual feedback on how well their model approximated
the training data, and the test data (overfitting vs underfitting). On the
other hand, they should be able to get visual feedback on how their
model is expected to perform on average (bias vs variance). As a
result, they should be able to understand these two concepts and reason
about their relationship. Finally, students should be able to realize the
tradeoff - trying to decrease one, increases other and they wont be able
to minimize both to full extent. As part of our secondary goal, students
should understand how the tradeoff is affected by the data-sampling
parameters like amount of noise, complexity and amount of data. We
break the above goals and discuss these in detail below.

Task 1. Identify overfitting and underfitting - We want students
to visually analyze training data along with their model’s predictions
and have some intuition on how well their model fits the training data
and how well it captures the target function. By trying out models of
different complexity, the students are expected to realize that complex
models tend to model random noise along with the underlying true
function. As a result, they don’t generalize well on test data (overfitting).
On the other hand, simple models, are not expressive enough to capture
the complex relationships in the true function. Hence, they do poor on
both training data and test data (underfitting).

Task 2. Understand bias and variance - We want students to
understand that bias and variance are expectations, and hence they are
computed by sampling multiple instances of data and training multiple
models. For a specific input, the predictions of these models are collated.
These collated predictions are used to compute bias and variance using
the equation 1. Also, students should acquire a visual interpretation of
equation 1: bias is the difference between expected prediction and true
prediction, and variance is the spread of different predictions.

Task 3. Relate bias and variance to overfitting and underfitting
- Through the visualization, the student should be able to intuit that the
model which overfits has high variance. Students should get some vi-
sual feedback that this happens because overfitting models are sensitive
to inputs. Hence if they resample data, a very small change in noise,
will give a very different model. This leads to variance being very high.
On the other hand, they should intuit that a model which underfits has
high bias. Through visual feedback, they should understand that these
models give quite similar predictions most of the time. However, they
will always be quite off from the true predictions.

Task 4. Bias-variance tradeoff - We want students to internalize
the fundamental tradeoff. They should visually analyze that if they try
to reduce bias by making the model complex, it increases the variance.
On the other hand, if they try to reduce the variance by making the
model simple, the bias increases. In either case, they get a bad fit. We
wants students to understand this tradeoff using different visualization
idioms supporting investigation at multiple levels of detail.

Task 5. How the tradeoff changes - Finally we want students to
tinker with the parameters of sampling algorithms like the complexity of

datasets, amount of noise, amount of data and see how the fundamental
tradeoff changes.

3.3 Domain data
For our visualization system, we predefine a set of true functions f (x),
and a set of possible choice of parameters P. We further categorize the
parameters P into Ps, belonging to sampling algorithm and Pp belonging
to prediction algorithm.

Sampling Algorithm - The true function f (x) is hidden from the
system, and instead we define a sampling algorithm. For some values
of input X , we obtain values Y from the sampling algorithm as per the
following equation:

Y = f (X)+ ε

For the regression data, we use a Gaussian distribution with zero
mean and standard deviation Pp such that ε = N (0,Pp). The value of
sampling parameter Pp controls the amount of noise. In our prototype,
we let the user control the value of Pp using a slider.

For the classification data it is important to have a non-linear de-
cision boundary so that adjusting the number of nearest neighbours
k will affect the bias and the variance of the model significantly. We
accomplish this by choosing two so called meta-centroids, µ1 and µ2,
so that one meta-centroid is in the upper left corner and one in the lower
right corner of a 2D grid. We then sample 10 points from each of these
two bivariate Gaussian distributions: N (µ1,Σmean) and N (µ2,Σmean)
where Σmean is a fixed covariance matrix. We then sample 400 data-
points using the 20 points sampled previously as means. The two sets
of 10 points represent two distinct classes that K-Nearest Neighbour
will try to predict so 200 datapoints will be sampled from each set of
10 points. To elaborate: for each class we pick one of the 10 means
generated at random (pk) and sample a datapoint from the distribution:
N (pk,Σdata) where again, Σdata is a fixed covariance matrix for all
datapoints.

Prediction algorithm - We fit a machine learning model f̂ (X) to
the data sampled using the sampling algorithm. For the given values
of X, we obtain Yhat using the model f̂ (X). For classification, we use
k-nearest neighbors (KNN) to learn f̂ (X) and for regression we use
polynomial regression with a basis of degree p. In our prototype, we
let the user control the value of p using a slider.

Training and testing - To show testing error, we repeat the above
process for a new values of XT and obtain corresponding values Y T ,
and Y T

hat . For regression, we show generalization error by using values
of X, which go beyond the values used while training.

Resampling and predictions - Using the process defined above, we
obtain a data triplet Ti = (X ,Y,Yhat). We repeat this process multiple
times to obtain a set of data triplets T = {T1,T2..Tn}. These sets of
triplets are used to compute derived statistics like bias and variance.

Derived statistics - We compute derived statistics like bias
and variance using equation 1 and residuals using the formula -
Ri(x) = f̂i(x)− fi(x).

3.4 Abstract task
At the highest level, the goal of our visualization tool is to present
information for consumption in pedagogical context. At the mid level,
the goal of students is to search and explore, try out different combi-
nations of parameters and analyze the behavior of learning algorithms.
Regarding targets, the users are mainly interested in identifying trends
and outliers, like how bias changes as we increase the degree of a
polynomial. At the lowest level the user of our visualization system,
wants to explore with three types of queries - identify, compare and
summarize.

Identify - We expect the users to identify item characteristics like
overfitting, underfitting, bad generalization, good generalization, simple
models, complex models, low/ high bias, low/ high variance etc.

Compare - The user should be able to compare derived data for
different models like their ability to generalize, complexity, bias, and
variance.

Summarize - The user should be able to summarize and get an
overview of derived data like residuals, bias and variance as the model’s

complexity increases. This will help them clearly visualize the bias-
variance tradeoff.

3.5 Abstract data
The data consists of quantitative attributes which can be viewed as a set
of a unidimensional and a univariate field sampled as a grid. However,
we found useful to view it as tables having multiple keys and multiple
quantitative attributes. This help us define operations like filtering and
aggregation more eloquently. A brief summary of all attributes has
been provided in table 1. Its important to note that some of attributes
can be vectors.

Table 1: Dataset attributes

Attribute Name Attribute Type Description

Model complexity Ordinal Complexity of model
Noise Ordinal Amount of noise in samples
Sample concentration Ordinal Amount of data for training
Sampling ID Ordinal ID of a particular sampling
Dataset type Categorical Predefined target functions
Train/Test Categorical Data for training or testing
X Quantitative The independent variables
Y Quantitative The dependent variable
Yhat Quantitative The prediction of the model

Derived Data: We compute multiple sets of derived data by aggre-
gating data in the table 1. If we aggregate data across individual data
points, we can compute metrics like training error and test error. If we
do a different aggregate, on say sample ID instead of individual data
points, we can compute residuals. If we aggregate on both sample ID
and individual data points, we get bias and variance. This happens for
each set of parameters Ps. Hence, for each derived data, we get different
tables where Ps is the key and values are bias, variance, training error,
testing error or residuals. Notice that number of items in these tables
can be different.

3.6 What-why-how
- We present a separate what-why-how analysis for each of our visual-
ization idioms in tables 2, 3, 4, 5. This is to reduce clutter in a single
table. This also makes sense because we implemented two separate
tools (for regression and classification) and we did not use all of our
visualization idioms in both our tools.

4 SOLUTION

To understand the bias-variance tradeoff we present two separate tools,
one for regression and one for classification. We present a basic learning
algorithm in each domain, namely polynomial regression and k-nearest
neighbors. An overview of both our prototypes is presented in Fig 1.
As discussed in section 3.3 and 3.5, we have multiple tables of raw and
derived data. In order to prevent visual clutter, we implement a control
panel to reduce the amount of data shown by filtering. This allows the
student to interactively change display and queries for different values
of parameters (P). In order to effectively support our goals (section
3.2), we implement two levels of visualizations. The first level is the
single model view which supports a detailed visual analysis of a subset
of our data. It allows the student to probe an instance of training data
and the model which fits it. The second level, namely the multiple
models view, gives an overview of how different models (trained by
resampling data) perform in comparison to the target function. To
support investigation of bias and variance at multiple levels of detail,
we present three separate visualization idioms - bull’s eye plot, box plot
and bar plot. We discuss our visualization idioms and design choices in
this section.

4.1 Filtering and faceting
In order to support tasks 1, 2 and 5 we want user to compare different
models characterized by parameters like model complexity, amount of

Table 2: What, why, how analysis of single model view

System Single model view

What: Data Table of data as presented in table 1
Why: Task Visually identify the complexity of data and

that of model
Why: Task Visually identify cases of overfitting and

underfitting
Why: Task Visually identify how well the model

generalizes on unseen data
How: Encode Express data values (X,Y) with horizontal and

vertical spatial position and point marks
How: Encode Express model with horizontal and vertical

spatial position
How: Encode Use color hue to distinguish data points and

model (regression)
How: Encode Use color hue to distinguish data

points (classification)
How: Encode Use color saturation to represent

decision boundary (classification)
How: Manipulate Filter based on model complexity, amount of

noise, dataset type, etc
How: Manipulate Filter and view test data along with training data

Table 3: What, why, how analysis of bull’s eye diagram

System Multiple models view, Bull’s eye plot

What: Data Quantitative attributes representing sum of residuals
for each data sample

Why: Task Identify the bias and variance for a particular model
How: Encode Point marks express each model
How: Encode Position channel is used to encode the error from the

target function (bulls eye)
How: Encode Spread of point marks encode the variance
How: Reduce Item aggregation

noise, amount of sampling and dataset type. Since, this corresponds
to a large amount of data, trying to show everything at once, or by
superimposing, leads to immense visual clutter. We solve this problem
by providing a control panel on the left side, which allows a user to
select a particular set of categorical values using sliders and buttons.
Similarly, we facet single model view and multiple-models view to
allow investigation at multiple levels of detail. Also, to allow simulta-
neously viewing, we present a multiform view by juxtaposing the two
views side by side as shown in Fig 1. This helps him relate overfitting
and underfitting (shown in single model view) with bias and variance
(shown in multiple model view) and hence support our task 3.

4.2 Single model view

Single model view is made by plotting the data and model predictions
on the same curve and using a color channel to distinguish them. This
view allows the user to visually analyze training data along with their
model’s predictions in detail. This helps him have an intuition on
how well their model fit the training data and how well it captures the
target function. Visually viewing the data allows the user to identify
overtrained and undertrained models. This supports task 1, 3 and 4. For
our trivial datasets visually identifying these cases are fairly easy and
intuitive for the user rather than analyzing train and test errors. For our
two prototypes of regression and classification, we implement separate
but similar idioms (Fig 2[a] and Fig 2[b])). In regression, we show a
regression line and in classification we show decision boundary along
with a gradient. Check out details in section 6. A summary of what,
why, and how analysis of the single model view is described in table 2.

(a) Single model view - Polynomial Regression

(b) Single model view - k-Nearest Neighbours

Fig. 2: We plot the data and model predictions on the same curve and
use a color channel to distinguish them. In (a), we show a regression
line and in (b) we show decision boundary along with a gradient.

4.3 Multiple model view
In multiple model view, we illustrate the characteristics of models
trained by sampling multiple instances of data. We visualize this
information to help students get an intuition of bias and variance. To
achieve this, we propose three different visualization idioms which
allow investigation from multiple perspectives. These idioms vary in
terms of intuitiveness, accuracy, level of detail, level of aggregation
etc. We hypothesize that each idiom supports understanding bias and
variance for various levels of background the students posses. Hence
we provide one or more instances of these idioms in our visualization
tools. We now describe each of these idioms in detail.

4.3.1 Bull’s eye diagram
In the bulls eye diagram (shown in Fig 3), each dart or point represents
one model trained by resampling data. The center of bull’s eye represent
the area of zero error and as we move away from the center, the error
of the model increases. The middle of the area where all the darts
lands roughly corresponds to bias and the spread of the darts roughly
corresponds to variance. Table 3 presents a summary of what, why, and
how analysis for this idiom.

4.3.2 Box plot
In this diagram, we plot residuals which are obtained by models trained
on different samples of data (resampling). We obtain these residuals
using the procedure explained in section 3.3. The quantitative residuals
is mapped to the vertical axis and the categorical key attribute (model
complexity) to the horizontal one. Each box in the box plot diagram
(shown in Fig. 4) represents the distribution characteristics of residuals.
As the box shifts downwards, it represents lower values of residuals
which corresponds to low bias. On the other hand, the height of the
bar represents the spread of residuals which roughly corresponds to
variance. This diagram allows us to view the bias and variance as the

Fig. 3: Bull’s eye diagram showing high bias and low variance The
center of bull’s eye represent the area of zero error and as we move
away from the center, the error of the model increases. The middle of
the area where all the darts lands roughly corresponds to bias and the
spread of the darts roughly corresponds to variance.

degree of polynomial changes shown in Figure 4. As we move towards
the right (model complexity increases), the boxes shift downwards (low
bias) while their height increases (high variance). Similarly if we move
towards the left, the boxes show high bias and low variance. Notice
that the scale of bias and variance can be very different. So, in order
to ensure discriminability, we have scaled the variance of residuals to
match the scale of bias. Table 4 presents a summary of what, why, and
how analysis of this idiom.

Fig. 4: Box plot showing bias variance tardeoff. As we move towards
the right (model complexity increases), the boxes shift downwards (low
bias) while their height increases (high variance). Similarly if we move
towards the left, the boxes show high bias and low variance.

4.3.3 Dual scale bar plot

In this visualization idiom, we represent the bias and variance using
a dual-scale bar chart as shown in Fig. 5. The green bars encode the
actual value of bias and purple bar represents variance using vertical
spatial position. Bias and variance for different complexity of models
(polynomial degree) is separated and ordered by categorical variable.
This diagram effectively demonstrates the bias-variance tradeoff with-
out any extra cognitive load of the student. As shown in the Fig. 5,
if we move towards right (model complexity increases), the bias de-
creases but variance increases. On the other hand, if we move towards
the left (model complexity decreases), the variance decreases but the
bias increases. Notice that the scales for bias and variance can be very
different. The decision to display them on separate scales helps to
clearly illustrate the tradeoff. As a result, a student will always observe
the accurate picture of the tradeoff (Task 4).

Table 4: What, why, how analysis of box plot

System Multiple models view, Box plot

What: Data Table of ordinal attributes representing model
complexity (key) and one quantitative attribute
representing residuals (value)

Why: Task Characterize distribution of residuals and
understand bias and variance

Why: Task Compare bias and variance of models with
different complexity

How: Encode One box-plot glyph per ordinal attribute expressing
derived attribute values like median, quantiles,
outliers, etc. 1D list alignment of glyphs separated
with horizontal spatial position

How: Reduce Item aggregation

Fig. 5: Dual scale bar plot diagram showing bias and variance tradeoff.
As we move towards the right (model complexity increases), bias
decreases but variance increases. Similarly if we move towards the left,
variance decreases but the bias increases.

4.3.4 Discussion

We presented three different visualization idioms to highlight four
ideas: multiple models, bias, variance and the tradeoff. As discussed
earlier, each idiom presents a different perspective and has different
strengths and weaknesses. The bull’s eye plot intuitively illustrate the
idea of multiple models, bias and variance (Task 2 and 3). However,
the tradeoff is not clearly visible (Task 4) and it imparts cognitive load
on the user to remember it for different model-complexity. The box and
bar plot supports task 4 better since we present the bias and variance
of all models on the same view. In bar plot, we aggregate all models
(one bull’s eye diagram) and present it as a set of two bars (green and
purple). This idiom clearly shows the tradeoff and minimal analysis
is required. However, due to aggregation students may not be able to
perceive the idea of multiple models. Hence doing bad on task 2. The
box plot lies in the middle of the two, where each box encodes the idea
of a distribution while the tradeoff is visible with some cognitive load.
Hence it stands somewhere in the middle on task 2 and 4.

5 IMPLEMENTATION

Our visualization tool is implemented as a web application using
HTML, CSS and JS. We used the D3.js library for the visualizations.
We used the math.js [9] library for mathematical calculations. We
developed each part separately, Halldor coded the KNN part of the
tool and Gursimran the Polynomial Regression part. We discussed
conceptual parts and the overall design together. The general structure
of our UI is inspired by TensorFlow Playground [12], that is the color
scheme of our backgrounds, sliders and buttons and the three column
separation of adjustable settings, output and visualizations.

(a) Linear looking dataset (b) Cubic dataset (c) Bi-quadratic dataset

Fig. 6: Bias-variance tradeoff in datasets of varying complexity. Notice in case of linear dataset (a), the bias does not change significantly. In case
of cubic (b), bias does not change after degree three. In case of bi-quadratic (c), bias decreases uniformly. The bias saturates because any increase
in degree of polynomial does not give us any better fit. This can be observed by trying out these models in the single-model view.

Table 5: What, why, how analysis for bar plot

System Multiple models view, Bar plot

What: Data Table of ordinal attributes representing model
complexity (key) and two quantitative attribute
representing bias and variance

Why: Task Identify, compare and summarize the bias and
variance with model complexity

How: Encode Point marks express quantitative attributes
with vertical position

How: Encode Color hue to distinguish the two quantitative
attributes and scales

How: Encode 1D list alignment of ordinal key attribute separated
with horizontal position

How: Reduce Item aggregation

5.1 Polynomial Regression Playground

The project uses bower [4] to document JavaScript dependencies. In-
teractive walkthroughs are provided with the help of intro.js [40]. The
code for UI is present in index.html and styles.css. The JS driver
script for the Polynomial Regression playground is index.html. It calls
javascript code for different components which is present inside the
folder js. Visualization idioms are implemented in the files - box.js,
box plot.js, bar plot.js, line plot.js. The code for box plot and bar plot
is adapted from [3] and [21]. The code for computing bias and variance
is present in bias-var.js. The functions written to generate, sample data,
train models and fit regression line are implemented in ml-functions.js.
All the UI events handling code is implemented in event handling.js.

5.2 KNN Playground

The main logic for the KNN part of the tool that connects all the differ-
ent parts together is implemented in index.html file. The data generating
part is implemented in data.js. We use an optimized data structure for
finding the K-nearest neighbours of a given point that is called a KD-
tree [2] using a Javascript library for its implementation [39]. The
implementation of the heatmap is in heatmap.js. The heatmap is in-
spired from Tensorflow Playground’s heatmap [11]. We use the same
technique for generating our heatmap (HTML canvas element) and use
Tensorflow Playground’s legend and color gradient. The dartboard is
inspired from Scott’s Fortmann static image [12] and we regenerated it
using SVG. All the dartboard related code, including the calculation of
bias and variance, is in dartboard.js.

6 RESULTS

We walk through usage scenarios in a comprehensive manner for both
parts of our tool in the following subsections:

Fig. 7: The degree of model is not enough to capture the relationships in
the data. This leads to underfitting as shown in the scatter plot. Notice
the box plot corresponding to degree 1, its high up and small in height.
This corresponds to high bias and low variance. This can also be seen
in the bar chart.

6.1 Polynomial Regression Playground
In section 3.2, we presented various tasks which our tool supports to
understand the bias variance tradeoff. In this section we present various
user scenarios that a student may follow. When a student encounters the
system for the first time, he is presented with the polynomial regression
playground shown in Fig 1[left]. Since the student may not be aware
of the use cases, the system presents an interactive walkthrough. The
walkthrough explains different components of the tools and introduces
the student to various controls for tweaking and exploring the bias
variance tradeoff. If a student is not familiar with the bias variance
tradeoff, we have a small discussion at the bottom which introduces him
to the topic and offers external resources for further exploration. A more
advanced student may want to skip the walkthrough and discussion and
go directly to the playground.

Overview: Recall the structure of the tool presented in section 4.
The left side of the tool presents a control panel which allows the
student to control the parameters like dataset type, amount of noise,
amount of samples, and degree of polynomial. In the middle, we
present a scatter plot (shown in Fig 2[a]) as the single model view for
polynomial regression. On the right, we present two plots to show the

(a) K=100 (b) K=1

Fig. 8: The decision boundary for different values of k. When the value
of k is high (a), we get a simple decision boundary (underfiting). When
the value of k is low (b), we get a more complex decision boundary
(overfitting)

bias variance tradeoff, namely box plot (shown in Fig 4) and the dual
scale bar plot (shown in Fig 5). By default the playground presents a
default choice of dataset and controls.

Scatter plot - The center visualization idiom presents the student
with the dataset and the regression line. The student may want to
explore by choosing a different degree of polynomial and inspecting
the fit. Also, the student may wish to use the zoom-out button to inspect
how well the model generalizes. This gives him the understanding of
overfitting and underfitting (Task 1).

Box plot - At the top-right, the student inspects the box plot which
makes him think about the underlying distribution where some models
did good, others did bad. This reminds the student about multiple
models being learnt and hence helps him understand bias and variance.
Also, he gets this understanding that bias is the expected error which
is approximately represented by the median of the box plot. The box
plot also reminds him about the spread of the errors, which roughly
corresponds to variance. Thus it helps in supporting task 2. Finally he
visualizes the tradeoff as he observes the certain pattern (discussed in
section 4.3.2) as he moves right in the curve (Task 4).

Bar plot - At the bottom right, the student observes the bias variance
tradeoff in a dual scale bar plot. As explained in the section 4.3.3, it
clearly and effectively demonstrates the bias-variance tradeoff as the
model complexity changes.

Exploring individual fits - Once the student observes how the bias-
variance changes with the model complexity, the student may wish to
explore how the models look like. With this aim in mind, the student
controls the slider for degree of polynomial and observes different fits.
The student observes that an underfit model corresponds to high bias
and low variance. The student makes this observation in box plot as
well where the student sees the box high up with little spread (Fig 7).
Hence the model is not sensitive to inputs and hence noise. Similarly
the student observes the case of overfitting when the bias is bias is low
and variance is high. The student observes that when he tries to fit a
degree 3 polynomial with degree 4 regression line, the bias remains
almost the same same but variance increases (Fig. 1[left]). Hence
the fit is worse. This exercise helps The student relate overfitting and
underfitting with bias and variance (Task 3).

Exploring different datasets - The student may want to explore
the tradeoff with different datasets. We provide the student with three
datasets which help him make different conclusions. The three datasets
corresponds to degree 3, degree 4 and degree 1 (training data). The
student analyzes the tradeoff in these three cases. Firstly, he observes
that in case of linear dataset, the increase in p, does not lead to any
decrease in bias and only leads to increase in variance, hence making
the model worse (Fig 6[a]). The student observes this phenomenon
when p is more than 3 in degree 3 dataset as well (Fig 6[b]). Finally,
the student observes that in degree 4 dataset, where higher degree
polynomials can lead to better fits, bias is reduced (Fig 6[c]). This gives

Fig. 9: A zoomed in view of the heatmap with test points. Test points
have a black outline while training points have a white one. Because k
is very small it overfits to variance in the blue cluster and misclassifies a
lot of test datapoints in the orange class. This is a sign of high variance.

the student better understanding that bias corresponds to better fitting
of data.

Exploring other parameters - Having gained a solid understanding
of bias-variance tradeoff as the model complexity changes, the student
may wish to explore the effect of sample size and noise. He may have
a certain hypothesis in mind which he wants to test in our playground.
When he tries different values using slides, he makes a couple of
observations. First he observes that variance reduces if we increase
more amount of data but bias does not change. Second he observes
increase in noise leads to increase in both bias and variance. The student
reasons about bias and variance by observing box plot and concludes
that all observations make sense (Task 5).

6.2 KNN playground

An overview of the KNN playground is presented in Fig 1[right]. Users
will see instructions in the header to scroll down for a brief explanation
of the bias-variance tradeoff and K-nearest neighbours. More advanced
users may wish to skip this step and start playing with the playground
right away. The text that appears when users scroll down familiarizes
the student with key concepts such as training error, test error and the
bias-variance tradeoff. We also cover the dartboard diagram idiom with
static images (originally used by Scott Fortmann [12]) so that when
entering the playground later, the user will be up to speed on what
the position of the darts represents. Also, further down there is more
text explaining the K-nearest neighbour algorithm. For now, users are
instructed to go back to the playground and try to get a sense of how
adjusting parameters affects the bias-variance tradeoff. However, they
are also instructed to revisit the text and read on once theyve finished
using the playground.

When entering the playground the user can start adjusting the sliders
on the left (see leftmost column of Fig. 1[right]) to adjust the noise in
the data and to set the k parameter for the model. Users can also check
the checkbox to view test datapoints on the heatmap. As soon as users
adjust the noise or the k parameter a few things happen. Firstly, the
decision boundary of the heatmap (See middle column of Fig. 1[right])
changes and secondly the darts will be cleared and reanimated into new
positions on the dartboard (See rightmost column of Fig 1[right].).

Heatmap: Users should see right away that significantly increasing
k results in a simple decision boundary as can be seen in Figure 8[a].The
algorithm will start misclassifying large portions of the data as can be
seen for the orange cluster at the bottom part of Fig 8[a]. Decreasing k
makes the boundary more complicated and will start to fit the training
data perfectly (see Fig 8[b]). Then when users check the test data
checkbox they will see on the heatmap that a low k misclassifies a lot
of points since their color is not the same as the color of the heatmap
around them (Task 2).

The noise parameter will generate a new set of datapoints on the
heatmap and update the heatmap and its the decision boundary accord-
ingly. Users will see that when they increase the noise it becomes more
difficult for the model to correctly classify all datapoints and the bound-

(a) High bias and low variance (b) Low bias and high variance

Fig. 10: Dartboard showing bias-variance tradeoff. In (a), the darts
are away from the center (high bias) but they are close together (low
variance). In (b), darts are closer to center (low bias), but they are
spread out (high variance).

ary will become less sharp and become wider and more desaturated
depicting that the algorithm is less confident on what class to predict in
that area. Decreasing the noise however will make the clusters more
distinct and denser making the decision boundary more precise (that
is jagged and very saturated even around boundaries) just like when
decreasing k (See Fig 8[b] (Task 5). The users should therefore be
starting to get a sense of how the bias and variance of the model change
as they adjust parameters. The noise does not seem to affect misclassi-
fying whole clusters but increasing k will. This will give users a sense
of how increasing k increases bias, that is the model underfits the data
while increasing k will increase the variance in the model since test
points are not being classified as well (Task 3). Meanwhile, adjusting
the noise should show user that it is strongly positively correlated with
the variance. Users can also see how adjusting these parameters affects
the exact training and test error as seen in the lower left corner of Fig
1[right] (Task 5).

Dartboard: When the user adjusts the noise or k the dartboard
is cleared and new datapoints, or darts, are animated flying onto the
dartboard. The users should have a sense of what the group structure
of darts means after reading the text accompanying the playground.
When users increase k they will see how the darts become more dense
signifying that the variance of the model is becoming less and less.
However, the darts are also landing farther and farther from the bullseye,
signifying a higher bias (See Fig. 10[a]). When decreasing k users will
ultimately see the darts again getting closer to the bullseye which means
that the bias is becoming less. At some point they will be getting more
and more dispersed however which means that variance is increasing
(See Fig. 10[b]). When users increase the noise parameter the darts will
also become more dispersed signifying a higher variance. However,
when the noise is decreased the points become less dispersed which
means that variance is decreasing. The dartboard is therefore effective
at conveying the idea of bias and variance (Task 2) and showing that
optimizing for bias and variance is a tradeoff (Task 4).

After adjusting the parameters in the playground the user should
have an intuitive understanding on how k and noise affect the bias-
variance tradeoff. However, hopefully, the user is interested in seeing
how the data was generated after playing with the parameters since it
always seems to be highly structured . The users remember to scroll
back down to where they left off when they started playing with the
playground. There, a text describes the data generation process that we
describe in Section 3. The users then see the sampling of the datapoints
animated on a grid explaining the data generation process visually.
By watching the animation, the users gain an intuitive understanding
on how the centroid of each cluster of datapoints is generated from a
meta-centroid for each respective class (see Fig. 11[a] and Fig. 11[b]).
Hopefully, seeing this animated graph, the user will then understand
more clearly how the choice of k might affect the classification of the
centroids themselves and their immediate area which is central to the
classification task (Task 5).

(a) (b)

Fig. 11: An overview of the data generating process. In (a), the large
points are the centroids of the smaller points who will be the centroids
of the clusters for the actual data. In (b), we have the data along with
the centroids and meta-centroids. Each small centroid is surrounded by
data points.

7 DISCUSSION AND FUTURE WORK

We believe that our visualization tool provides a good starting point for
giving users an intuitive understanding of the bias-variance tradeoff in
the context of adjusting both hyperparameters and data characteristics.
Like mentioned in Section 2, the current options for students wanting
to learn more about the tradeoff are mostly math-heavy blog posts that
include very intuition or blog posts with mostly static images and very
little interactivity.

However, we recognize that there are several limitations with our
approach. For one, our visualization tool is segregated into two parts
which results in some confusion for users we have tested it on. Having
a single view with a toggle for both algorithms (KNN and Polynomial
Regression) would have been better than developing them as two com-
pletely independent parts. This however, can be mitigated by a simple
switch in the visualization tool resulting in being able to toggle between
algorithms.

Another limitation is that the user has very little control over the
data generating process. There is a tradeoff here, between giving the
user full flexibility and how easy it is to see the extremities of the
bias-variance tradeoff in action. For example, if a user generated data
with a linear decision boundary for the K-nearest neighbours algorithm,
increasing k would not result in a higher bias. The user might have to
play around with the playground for a long time until the bias-variance
tradeoff became intuitive. For this tool, we carefully generated our data
to display the extremities of the bias-variance tradeoff. This, we argue,
is the best option for teaching novice users about the tradeoff. For more
advanced users we could add extra features for more control of the data
generating process.

Furthermore, the tool is still a bit too laggy in our opinion. Multiple
remedies were made to make the tool faster, like calculating the K-
nearest neighbours using KD-trees [2]. However, the tool still results in
a ∼ 1 second lag after adjusting parameters which limits the dynamic
feeling of our visualizations.

8 CONCLUSION

In this paper we presented a visualization tool aimed at giving novice
machine learning students an intuitive understanding of the bias-
variance tradeoff. We used two algorithms, K-Nearest neighbours and
Polynomial regression, to explain the tradeoff for both classification
and regression tasks. To maximize the visual understanding of how hy-
perparameters affect the tradeoff we had to carefully design appropriate
data generating functions. The output of those functions was then used
as an input to the learning algorithm with selected hyperparameters
adjusted by the user.

We designed multiple visualization idioms to show the visual output
of the model, its performance and its bias and variance. Those visualiza-
tions provide the user with an intuitive sense of how the complexity of
the model and data characteristic affect the tradeoff which is imperative
for understanding more complex machine learning concepts.

It is our hope that this tool can be used in courses, both onsite at
universities and online, as well as an online resource to convey this
fundamental concept to aspiring machine learning professionals in a
clear manner.

REFERENCES

[1] S. Amershi, G. Carenini, C. Conati, A. K. Mackworth, and D. Poole.
Pedagogy and usability in interactive algorithm visualizations: Designing
and evaluating cispace. Interacting with Computers, 20(1):64–96, 2007.

[2] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[3] M. Bostock. Box plots, 2017.
[4] bower. Bower. https://github.com/bower/bower, 2017.
[5] J. Brownlee. Gentle introduction to the bias-variance trade-off in machine

learning, 2016.
[6] S. Carter and M. Nielsen. Using artificial intelligence to augment human

intelligence. Distill, 2(12):e9, 2017.
[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. arXiv preprint
arXiv:1606.00915, 2016.

[8] S. Y. . T. Chu. A visual introduction to machine learning, 2015.
[9] J. de Jong. math.js. https://github.com/josdejong/mathjs, 2017.

[10] Distill. Distill, 2016.
[11] T. Flow. Tinker with a neural network, 2015.
[12] S. Fortmann. Understanding the bias-variance tradeoff, 2012.
[13] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical

learning, vol. 1. Springer series in statistics New York, 2001.
[14] G. Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill

.00006
[15] A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with

deep bidirectional lstm. In Automatic Speech Recognition and Understand-
ing (ASRU), 2013 IEEE Workshop on, pp. 273–278. IEEE, 2013.

[16] N. Harris. Visualizing k-means clustering, 2014.
[17] B. Insider. There’s a shortage of ai engineers in the us, 2017.
[18] A. Karpathy. Convnetjs demo: toy 2d classification with 2-layer neural

network, 2014.
[19] B. Knoll, J. Kisynski, G. Carenini, C. Conati, A. Mackworth, and D. Poole.

Aispace: Interactive tools for learning artificial intelligence. In Proc. AAAI
2008 AI Education Workshop, p. 3, 2008.

[20] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[21] liufly. Dual-scale-d3-bar-chart. https://github.com/liufly/

Dual-scale-D3-Bar-Chart, 2017.
[22] N. Mccrea. An introduction to machine learning theory and its applications:

A visual tutorial with examples, 2014.
[23] T. Munzner. Visualization analysis and design. CRC press, 2014.
[24] C. Olah. Neural networks, manifolds, and topology, 2014.
[25] C. Olah and S. Carter. Attention and augmented recurrent neural networks.

Distill, 2016. doi: 10.23915/distill.00001
[26] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill,

2(11):e7, 2017.
[27] L. Pappano. The year of the mooc. The New York Times, 2(12):2012,

2012.
[28] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,

M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al. The kaldi speech
recognition toolkit. In IEEE 2011 workshop on automatic speech recog-
nition and understanding, number EPFL-CONF-192584. IEEE Signal
Processing Society, 2011.

[29] V. Powell. Image kernels, 2014.
[30] V. Powell. Ordinary least squares regression, 2014.
[31] V. Powell. Principal component analysis, 2014.
[32] G. Ros, A. Sappa, D. Ponsa, and A. M. Lopez. Visual slam for driverless

cars: A brief survey. In Intelligent Vehicles Symposium (IV) Workshops,
vol. 2, 2012.

[33] R. Sarikaya, G. E. Hinton, and A. Deoras. Application of deep belief
networks for natural language understanding. IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP), 22(4):778–784, 2014.

[34] G. Singh. Polynomial regression playground, 2014.
[35] sp4ke. awesome-explorables, 2017.
[36] Stephanie and Tony. A visual introduction to machine learning, 2017.

[37] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems,
pp. 3104–3112, 2014.

[38] H. Thorhallsson. k-nearest neighbours playground, 2014.
[39] Ubilabs. kd-tree-javascript. https://github.com/ubilabs/

kd-tree-javascript, 2017.
[40] usablica. Intro.js. https://github.com/usablica/intro.js, 2017.
[41] E. Visually. Ordinary least squares regression, 2014.

https://github.com/bower/bower
https://github.com/josdejong/mathjs
https://github.com/liufly/Dual-scale-D3-Bar-Chart
https://github.com/liufly/Dual-scale-D3-Bar-Chart
https://github.com/ubilabs/kd-tree-javascript
https://github.com/ubilabs/kd-tree-javascript
https://github.com/usablica/intro.js

	Introduction
	Related work
	Data and task abstractions
	Domain description
	Domain task
	Domain data
	Abstract task
	Abstract data
	What-why-how

	Solution
	Filtering and faceting
	Single model view
	Multiple model view
	Bull's eye diagram
	Box plot
	Dual scale bar plot
	Discussion

	Implementation
	Polynomial Regression Playground
	KNN Playground

	Results
	Polynomial Regression Playground
	KNN playground

	Discussion and future work
	Conclusion

