
Visual Encoding of Dissimilarity Data via Topology-Preserving Map Deformation*

CPSC 547: Information Visualization Felix Grund *Cartography

We love maps!

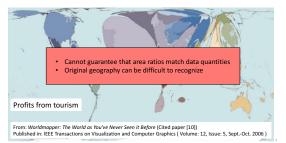
But when it comes to science...

Let's split the title...

We visualize... ...things that are different... ...by changing a map...

Visual Encoding of Dissimilarity Data via Topology-Preserving Map Deformation


...without losing regional structure.

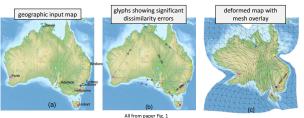

"We visualize things (that are different) by changing a map without losing regional structure."

Background (1) – Cartograms


- Deformation of map such that
- · geographic regions correspond to quantitative value
- · but adjacencies and shapes are preserved
- Have been used to show a variety of attributes
- · Create flashy juxtaposition between geography and data

Background (3) – Travel Time Maps

- Focus on special case of transportation network (locations/distances)
- · Deform map so travel times become edge lengths


From: A new algorithm for distance cartogram construction (Cited paper [35]) Published in: International Journal of Geographical Information Science (ISSN: 1365-8816)

Contribution

· New map deformation technique that preserves topology

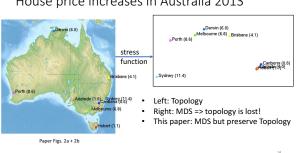
- · balances preserving geographic shape with conveying data
- Instead of simple scalar values and regions (cartogram) · take a complete weighted graph between locations
- · move the locations such that distance corresponds to weights · but only as closely as possible
- Encode dissimilarity between locations as edge weights
- distance in deformed map then related to data dissimilarity.
- enable to compare distances between locations and attributes · Overcome limitations of deformation with visual overlays
- · Deformation in response to interaction (with good performance)

House price increases in Australia 2013

???

Technique:

Topology preserving multidimensional scaling

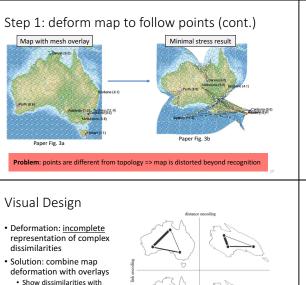

Background: Multidimensional Scaling (MDS)

- · Visualizes level of (dis-)similarity of individual cases of a dataset
- · Achieved by minimizing stress
- function over positions of data points · Plot with "minimal stress": distance between points is proportional to dissimilarity

MDS applied to voting patterns in US house of representatives - blue: democrats, red: republicans (Source: Wikinedia)

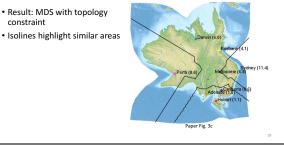
House price increases in Australia 2013

First impression...

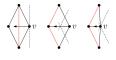


Approach

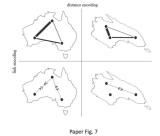
- MDS of data points in deformable mesh
- · Original map image is mapped onto mesh incrementally through transformations
- Mesh may be deformed
- Constraint: mesh and data vertices cannot pass through mesh edges
- 3 steps
- 1. Deform map to follow points (MDS)
- 2. Preserve map topology
- 3. Enable interaction by dynamic mesh modification


Step 1: deform map to follow points

- Map with triangular mesh overlay
- Edges of triangles: Delaunay triangulation (?)
- "no point in P is inside the circumcircle of any triangle" (Wikipedia) Vertices: geographic locations + "helper points"
- · add bendpoints
- · regularize and preserve topology
- New stress function with helper points to model both:
 - · degree of fit of the data points to their ideal separation
 - · degree of deformation of the mesh


Step 2: preserve mesh topology · Idea: preserve orientation of triangles in the mesh

- · Constraint in the deformation:
- · No inverted triangles
- · Minimum height for triangles
- Algorithm for stress reduction by iteratively refining triangles
- · Start with the original deformation and run through all triangles
- Correct triangle's orientation to meet constraints with minimal change.
- · Repeat until satisfying overall configuration is found



Step 3: dynamic mesh modification

- · Challenge: interactive setting · Impossible to predict where points will move
- Solution: update mesh while stress reduction algorithm is running · Options: adding/removing points vs. changing edges
- · Decision: changing edges is sufficient (edge flipping)
- After edge flip: minimal height constraint not violated and points can move
- Again: preserve topology!
- · by constraints on flips

- visual links · Show errors in map distance using error glyphs

Visual Design Part 1: Visual Links

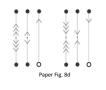
- · Goal: convey dissimilarity and geographical data
- · Solution: visual links
- · Challenge: maps are dense representation and links should
 - · be distinguishable from background map
 - · limit clutter of the background map
 - · encode weight
- · encode directionality

Visual Design Part 1: Visual Links (cont.)

Step 2: preserve mesh topology (cont.)

constraint

- · Grayscale: distinguishable from background map
- Thin lines and pencil-like marks; avoid clutter
- · Weights: thickness
- · Directions: tapered links



• Problem: not all links can be shown due to clutter

- Solution: Glyphs highlighting difference betw. dissimilarty and spatial separation

Visual Design Part 1: Visual Links (cont.)

- Decisions:
 - · Look and feel of error bars
 - · Discrete over continuous (three bins)
 - · Symbols existent in cartography

Visual Design Part 2: Deforming the Map

- Map deformation shows dissimilarities with fewer visual overlays
- Problem: required background knowledge on map
- · Solution: modify map design to convey deformation
- · Grid cells are enlarged or shrunk
- · Link current position with previous position

Visual Design Part 2: Deforming the Map (cont.)

- Interaction
- · Selection of nodes
- Filtering of links
- Switch from general deformed view to centered view with selected points . Change stress threshold to show and hide glyphs
- Config. panel for different encoding combinations => enable comparisons
- · Redrawing after each iteration of algorithm

· Power grid data in Australia

· Socioeconomic data in the UK

· Rail travel-times in the UK

Application Case Studies

Demo

Technique Evaluation

- Measure performance: indicate responsiveness for interactive usage
- Datasets: house prices, power grid, socioeconomic data
- · Applied with different grid sizes
- · Techniques: unconstrained, constrained, constrained dynamic mesh
- · Results:
- · Dynamic mesh is most effective in reducing stress and improve performance (with constraints on grid size)
- . Summary: algorithm is fast enough to compute deformation with interaction
- · Limitation: 30 data points at most

What – Why – How

- · What (data)
- Geographical maps (with arbitrary encoding already present)
- · Arbitrary (dis)similarity data associated with locations
- · What (derived):
- · Complete weighted graph
- · Why (tasks):
- · Highlight (dis)similarity between locations in terms of underlying attributes
- · How (encode):
- Map deformation
- Nodes for locations and weighted, directed graph edges (connection marks)
- · Discrete error glyphs on edges
- · Deformed grid
- · Links indicating location before deformation
- · Isolines for areas of high similarity

What – Why – How (cont.)

- · How (reduce): · Selection of nodes
- · Filtering of nodes
- · Change stress threshold
- · How (facet):
- · Switch from general deformed view to centered view with selected points
- · How (manipulate): · Change encoding combinations
- · (some other encoding techniques in case studies)
- Scale: max 30 data points (authors stay vague)

Good

- Novel compromise of both deforming and preserving topology
- · Both are important!
- Novel ability of animation associated with map deformation Algorithm and its performance with animation are impressive
- · Good example how one technique can be enriched by another
- · Map deformation + visual overlays
- · Visualization techniques are well explained and justified
- · Authors did a lot of research and consulted experts

Bad

- * ② Hard to read ②
 * Requires a lot of background knowledge
 * Some terms remain unexplained and unreferenced
- Encoding too many things
 Even though authors explain how to avoid clutter, we still find it
- Visualization is hard to interpret
- Also requires background knowledge
 Even with the demo it's hard to understand what this is about
- Authors remain vague in scalability
- Evaluation: 30 data points max
- Theory vs. practical
- Suddenly additional encoding technique (e.g. aggregate data points) explained in case studies

Thank you.