EVALUATION OF ARTERY VISUALIZATIONS FOR HEART DISEASE DIAGNOSIS

Michelle Borkin, Krzysztof Gajos, Amanda Peters, Dimitrios Mitsouras, Simone Melchionna, Frank Rybicki, Charles Feldman, and Hanspeter Pfister

NON-INVASIVE DIAGNOSIS

Generate patient geometries

Patient specific blood flow simulation

ESS = endothelial shear stress(i.e., frictional force from blood flow)

initial disease

ESS = endothelial shear stress(i.e., frictional force from blood flow)

This can rupture and give

PREVIOUS WORK

• ESS Vessel Visualization

[e.g., Forsberg, et al. (2000), Kanitsar, et al. (2002), Museth, et al. (2008), Ropinski, et al. (2009)]

PREVIOUS WORK

• 2D vs. 3D Evaluation

[e.g., Cockburn & McKenzie (2002), Laidlaw, et al. (2005), Tory, et al. (2007), Forsberg et al. (2009)]

[Troy, et al. 2007]

[Laidlaw, et al. 2005]

[Forsberg, et al. 2009]

FORMATIVE QUALITATIVE STUDY

- Semi-structured interviews
- I 0 medical doctors and researchers
- Brigham & Women's Hospital (Boston, MA)

3D

LAYOUT AND PROJECTIONS

Color

Color

COLOR

3.

0

QUANTITATIVE STUDY: GOALS 3D vs. 2D rainbow vs. diverging Shear Stress (Pa) Shear Stress (Pa)

- 21 Harvard Medical students (12 women and 9 men)
- Mixed within-subject and between-subject design:
 - within = dimensionality of representation (2D or 3D)
 - between = color mapping (rainbow or diverging)

e.g., Participant A

e.g., Participant B

- Dependent measures:
 - In the fraction of low ESS regions identified
 - In number of false positives (i.e., non-low ESS regions) identified as low ESS)
 - time to complete a diagnosis

Results

ACCURACY

Strong effect of **dimensionality** on accuracy

How many low ESS regions found?

-2.25 -1.50 -0.75

62%

ACCURACY

Strong effect of **dimensionality** on accuracy ...as well as **color**

39%

ESS (Pa)

-2.25 -1.50 -0.75

9|%

EFFICIENCY

Participants more efficient in 2D.

EFFICIENCY

Participants more efficient in 2D. Rainbow color map has greater effect on efficiency in 3D.

COMPLEXITY

Accuracy decreases with increased data complexity in 3D

COMPLEXITY

Accuracy decreases with increased data complexity in 3D (not true in 2D!)

SUBJECTIVE RESPONSES 2D

- I found it easy to identify low ESS regions.
- I was able to perform the task efficiently.
- I am confident I found all the low ESS regions.
- I am confident all the places I marked are really low ESS.

FINDINGS SUMMARY

- Domain experts important for design and evaluation
- Even for 3D spatial data, a **2D** representation is

more accurate for spatial tasks
more efficient for spatial tasks

- Rainbow color map
 - is not accurate and not efficient
 - has adverse effects even greater in 3D

CONCLUDING REMARKS

 3D representation is still essential for surgical planning

• 2D tree diagram applicable to other applications

 Quantitative study convinced our users of good visualization practices

