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ABSTRACT

Understanding and debugging distributed systems is a difficult task.
Without proper tools developers are forced to inspect logs from di-
verse machines. Tracing tools are used track distributed executions
based on control flow, and are typically accompanied by a visualiza-
tion front end for ease of use, and comprehension. Here we propose
a visualization for state based tracing. Our prior work used t-SNE to
visually cluster an execution. This approach took minutes on traces
of over 100 trace points, and over 300 variables, a significant barrier
to interactivity. In addition we used inferred data invariants as a
characterization of a systems properties. Lists of such invariants
totalled in the hundreds, and were incomprehensible to users. Here
we propose algorithmic, and architectural techniques for improving
the performance of t-SNE for the sake of interactivity, and a novel
technique for automatically extracting interesting data invariants to
reduce their cardinally, and increase comprehensibility.

Index Terms: K.6.1 [Distributed Systems]: Trace Visualization—
Debugging Visualization;

1 INTRODUCTION AND MOTIVATION

The complexities of distributed systems have long plagued their
developers. Writing code which executes on various machines is in-
trinsically more complicated due to networking eccentricities, such
as failures, partitions, and message delays. Debugging and checking
the correctness of such systems is laborious and technical, as devel-
opers must inspect large logs for small discrepancies in expected
values, and timestamps. At scale auxiliary tools are necessary for
interpreting logs and making them understandable. Typically tracing
tools are used to reconstruct the communication of nodes throughout
a system, order their events, and present developers with a compre-
hensive view of an execution. Tracing tools alone still produce large
amounts of data, albeit their structure is more understandable than
raw logs. Typically tracing tools are equipped with a visual front
end, allowing users to quickly observe the behaviour of executions,
and under scrutiny identify irregular or bugging behaviour. No one
tracing technique is sufficient for debugging distributed systems.
While most tracing tools are concerned with debugging they typi-
cally fall into 3 sub categories of performance tuning, distributed
control flow, and model checking. Each of these tracing objectives
have different flavors of visualization which pair with them. We
overview these visualization techniques in Section 2

We propose a tracing tool which captures state similar to a model
checking trace tools, with the exception that rather than logging con-
trol flow, our tracing tool only logs a distributed programs state. Such
tracing is unconventional and does not fit nicely into the aforemen-
tioned tracing categories. As such our unique requirements demand
innovative visualization solutions. Entirely state based program
analysis has ties in the world of trajectory programming [18–20]. In
trajectory analysis simple ML techniques such as weather man, and
mean prediction, as well as linear, and logistic regression are used
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to automatically predict and parrallelize computation based solely
on state analysis.

Our proposed visualization for traces of program state applies a
similar ML technique, t-SNE clustering, a dimensionality reduction
algorithm [11]. We leverage t-SNE to clusters points in a programs
execution based on the similarities of a programs state. T-SNE
requires a distancing function to cluster state, our distance function
is as follows. The distance between two trace points p and p′, whose
state is composed of an identical set of variables with potentially
different values. For each matching pair of variables XOR them
together. Each 1 bit in the resultant XOR is a difference of 1 bit
between the variables. We calculate the difference between two
variables as the number of one bits in the XOR. The distance between
trace points p and p′ is the euclidean norm of all variable distances.

We found the results of our initial technique promising, and
the high level behaviour of distributed programs we traced. How-
ever, our visualization suffers due to a high level of computational
complexity in running t-SNE. A single step of the iterative t-SNE
algorithm is O(n), and the algorithm is typically executed for greater
that 20 iterations before a reasonable clustering is obtained. Typical
runtimes for traces consisting of 80 - 100 trace points, containing 80
- 100 variables each resulted in runtimes in the tens of minutes. This
significant barrier to interactivity lead us to alter the architecture of
our tool, and implement parallel t-SNE to achieve interactive sub
10s computation times.

Our prototype visualization allowed users to inspect trace points,
and view individual variable values, without the ability to com-
pare points. All variables were weighted equally when computing
weights. Our interactivity goals are two fold first developers should
be able to query two points, and inspect variables which caused them
to be distant from one another. Second we acknowledge that all vari-
ables are not of equal importance in a program. Some variables
values drastically alter the behaviour of a program while other do
not. To this end we extended our interface to support re-clustering
with increased weights for important user specified variables.

An additional feature of our tracing tool is the analysis of dis-
tributed data invariants. We infer invariants using Dinv, a distributed
front end for Daikon [6]. These invariants are inferred over entire
traces of an execution, and the number of invariants can be large and
incomprehensible (300-400). In addition to our improvements of
t-SNE we refined our invariant analysis by first, logically detecting
t-SNE clusters using k-Means clustering, deriving per cluster invari-
ants, and refining those further to unique invariants for each cluster.
This processing step greatly reduces spurious, and uninteresting
invariants, and profiles cluster behaviour more precisely.

The rest of the paper is laid out as follows. Section 2 covers
related work. Section 3 overviews the scope of our contributions,
and Section 4 covers our implementation. Section 5 details our
performance results and data refinement accuracy. Finally Section 6
and Section 7 denote potential future work, and the conclusion of
the paper.

2 RELATED WORK

Performance tracing tools such as [1, 9, 13, 16, 21], aim to decrease
latency of distributed operations by maximizing concurrency, and
minimizing time spent blocking. Performance visualizations often
aligned parallel processes approximately, and color encode large
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Figure 1: Alterations in Dviz architecture. A) Original architecture with
single-threaded JavaScript computation. B) JavaScript front end with
highly paralleled Go server managing compute requests.

latency’s to help developers identify sub optimal segments of their
executions.

Control flow tracing tools such as [2,5,15] help developers debug
fine grain messaging protocols. Visualizations of such traces must
often encode all messages, as developers must reason about all
potential message orderings. A common encoding for distributed
control flow is a message passing graph, in which time is encoded as
a vertical line for each traced host, and messages are directed arrows
connecting host lines.

Model checking trace tools like [3, 4, 17] help developers verify
the correctness of their system by generating an abstract model of
an execution. Such systems typically capture control flow, and state
transitions of a trace, and compose a finite state machine (FSM) of a
systems execution. Visualizations of such traces often encode the
trace as a control flow points (such as the entrance of a function)
connected with directed edges to other control flow points. These
visuals can grow to an incomprehensible scale as the size of many
models is exponential.

3 SCOPE

Our initial distributed trace time curve visualization suffered a num-
ber of shortcomings. Mainly the time to compute the time curve
using t-SNE was too slow, on the order of 8-10 minutes for the traces
we wished to analyze. Such a compute time is problematic for us
because we wished to achieve interactive recomputation of the time
curve by biasing clusters towards variables that users marked as
important. The leading cause of our visualizations compute time
was the single threaded JavaScript architecture we used to run t-
SNE. Another shortcoming of our visualization was the lack of
labels on clusters, and the size of invariants generated for a single
trace. T-SNE generates visual clustering, but not logical ones, so
no further computation can be done to the clusters. Daikon, our
tool for inferring distributed invariants, outputs all of its template
invariants which are not violated during an execution. This number
can be large, and many invariants are spurious. In the following
section we describe our architectural shift from JavaScript to Go, the
implementation of an efficient parallel t-SNE, our back end support
for skewing t-SNE clustering towards important variables. Further,
we describe our algorithm for computing visual t-SNE cluster into
logical ones, our approach for calculating cluster invariants, and
their subset of unique cluster invariants.

Figure 2: Time curve generated by our prototype running puts and
gets to a key value store. Highlighted in green are two points which
are both executing puts. However, their state distance is large, with
no justification.

3.1 JavaScript to Go

JavaScript has many convenient frameworks for building client
server applications which are compatible with nearly all browsers.
This fact lead us to develop our time curve prototype in a mixture of
React [8], and node.js [12]. Calculating XOR distance on our target
traces was sufficiently slow with this framework that we cached
results and served precomputed distance from our node.js server.
Figure 1 outlines our original architecture. T-SNE coordinates were
calculated client side, at latencies of 30s. To achieve our goal of
interactivity we designed a new architecture with a thin client, which
issues computation requests to an optimized server written in Go.
Our choice of Go was due to its concurrency language primitives
and increased performance. In section 4 we discuss the details of
our implementation.

3.2 Parallel t-SNE

t-SNE is a ML algorithm for dimensionality reduction. We leverage
t-SNE as the state space of a trace point can be modelled as a
high dimensional vector where each variable is a dimension with a
magnitude equal to it’s binary encoding. At it’s core each iteration of
t-SNE has 4 steps. First a cost gradient is calculated, using a distance
function, second the gradient is normalized, third the gradient moves
all projected points a distance, last the momentum of each point
is updated for the next step, and the points are re-projected. Each
stage of this algorithm has a data dependency on its prior step,
therefore there is no trivial method for parallelizing t-SNE. Our
solution requires that separate threads are delegated points for which
they must compute values, and a master thread which coordinates
barriers to protected against inconsistent memory accesses.
XOR Distance: A single point in a distributed trace can consist of
hundreds of variables. Computing the distance between any two
points requires that we calculate XOR on each variable pair, and then
calculate the euclidean norm of each. Our typical traces consist of
100-300 variables per trace, and 100 trace points. As t-SNE is O(n2)
per iteration, requiring approximately 20 iterations for reasonable
results we end up with a typical number of XOR computations in
the order of ((300*300)/2)*100 * 20 100M XOR computations. We
alleviate much of this complexity by precomputing XOR distance
for each pairs of points and caching them. By doing so we only
incur the full cost of running XOR distance for a single iteration of
t-SNE.



3.3 variable weighting and distance reporting
Figure 2 is an example visualization generated by our original tool.
At a glance the image is composed of 2 clusters, with no semantic
meaning behind them. In fact this is a distributed key value store
responding to a 50% put, and 50% get workload. Under the assump-
tion that users would generate their own traces from test cases, we
assume that they will have some understanding of the high level
functional behaviour of their system. To help developers reason
precisely about clusters we aimed to answer the question Why is
point A distant from point B?.

3.4 Cluster Detection, and Invariants
The results of running t-SNE on high dimensional data are visual
clusters of points. While these points are useful for discerning
patterns in a trace, but as they are visual, they are not available
for further analysis without an additional processing. We propose
the use of k-means clustering on t-SNE output, to logically cluster
visual clusters. Alternative density clustering techniques such as
DBSCAN [7] have greater precision at detecting clusters automati-
cally, our choice of k-means is to allow users to select the number
of clusters they observe.

Logical clusters detected by k-means, can be further processed in
isolation from other clusters. Our prototype tool output distributed
data invariants which held over an entire execution. These invariants
are course grain, and do not expose invariant behaviour of individual
clusters. Daikon outputs all template invariants which are not vio-
lated by a trace, and which are supported by entries in a trace up to a
minimal confidence measure. Applying daikon to individual clusters
has the downside that the number of detected invariants grows, as
there is less evidence to invalidate spurious invariants. We propose
that invariants unique to clusters identify their most interesting be-
haviour. To detect unique invariants we compared each cluster with
all others using Daikon’s Invariant Checker tool. Unique invariants
for a cluster, are invariants which are violated by all other clusters.

4 IMPLEMENTATION

4.1 Go Server
Section 3.1 describes the shortcomings of JavaScript as a fast com-
putational engine, here we describe our migration to a server written
in Go, along with it’s advantages and disadvantages. Our initial
Node.js server, output precomputed XOR distances, and states to a
JavaScript client which computed t-SNE and plotted a time curve.
They communicated requests via HTTP, in JSON format. Our Go
server and JavaScript client communicate using the same protocol,
with the exception that XOR distances are not precomputed. The
client first requests raw, trace data, followed by a request to process
the trace, and compute t-SNE clustering, and or invariant detection.
Our decision to server trace data from the server is for the sake of
extensibility. In the future trace data could be streamed to the server
directly from an instrumented program, an operation which should
bypass client functionality.

4.2 Parallel t-SNE
T-SNE was implemented in two stages using an architecture similar
to in memory Map-Reduce. We use a master worker system wherein
a master schedules treads equal to the number of available cores
on a machine, and allocates them a range of work. In the case
of XOR their work is a range of points to compute distances on.
XOR distance computation is embarrassingly parallel so the master
thread simply waits for all threads to complete before continuing to
t-SNE iterations. The four data dependent computations of t-SNE
are described in Section 3.2, in order to respect data dependencies
we implemented parallel t-SNE as a 4 stage synchronous pipeline.
Worker threads are allocated points identically to XOR, and are
additionally provisioned with communication channels. Workers
listen for commands on channels, and execute a single state in the 4

state pipeline upon request. When complete they single the leader.
Our implementation is built off of [14] and required an additional
80 lines of Go to parrallelize.

4.3 Variable weighting
Reporting variable weights to our client is simplistic from an im-
plementation perspective, but with a few subtle pitfalls when im-
plemented practically. Variable differences are calculated during
XOR computation, collecting variable difference for each variable
required only a few lines of code change. On our modest size trace
of 300 variable per trace point over 100 points, the size of the dif-
ference matrix was 75GB, requiring over 8min of transfer time on a
local machine! Luckily the matrix is sparse, reporting only variable
differences reduces the matrix to 2GB. Further much of data in the
matrix is redundant (i.e. variable names) post tar.gz compression
our matrices averaged 35MB.

4.4 Cluster Detection
To detect t-SNE clusters for further processing we leveraged an
off the shelf k-means clustering library goxmeans [10]. Goxmeans
generates multiple cluster models per data set. In all cases we select
the clustering model with the highest bayesian information criterion,
which matches the number of user selected clusters. In our current
implementation, cluster# selection has not been integrated into our
front end visualization, and specified via command line.

4.5 Daikon and Cluster Invariants
Logical clusters are fed as input into a Go frontend which executes
Daikon as a separate process. Cluster invariants are inferred by
partitioning original traces into sub traces which map to clusters, and
executing daikon on them. Unique cluster invariants are computed
by checking each clusters invariants against all others. Unique
invariants, are invariants which are not present in any other cluster.
Daikon does not have a Go API and thus the files in the Linux
operating system are used to coordinate between the two processes.

5 RESULTS

To evaluate both the increase in performance gains from our archi-
tecture transfer we ran a performance evaluation. In addition to
comparing our Go server to a JavaScript baseline we also compared
the performance gains from running single v.s. multi threaded t-
SNE. We close our evaluation with an accuracy measure of k-means
clustering as a technique for logically grouping t-SNE clusters.

Experimental setup. We ran all our experiments on an Intel
machine with a 4 core i5 CPU and 8GB of memory. The machine
was running Ubuntu 14.04. and all applications were compiled using
Go 1.6 for Linux/amd64. Experiments were run using a trace file
containing 362 trace entries, with 80 variables per trace entry with a
size of 1.5MB.

5.1 XOR distance and t-SNE
Calculating XOR distances is an embarrassingly parallel task. Fig-
ure ?? shows our scaling results taken from incrementing the number
of threads used to compute the distance. Although the algorithm is
easily parallelizable, a master thread must still aggregate the results
generated by the working threads, and wait for the final stragglers
(threads which are scheduled less frequently or run slower) to com-
plete their execution. The average time achieved from running XOR
distance on 4 cores was 1.75s.

Prior to refactoring running t-SNE for 20 iterations, each of which
made a call to a single threaded XOR function required 507s or 8min
on average. Post go migration, and XOR caching single threaded
latencies for 20 iterations dropped to an average of 1.1s. To test
the scalability of our mulit threaded t-SNE we incrementally added
threads to additional cores on our test rig. The average time obtained



Figure 3: Single v.s. Multi threaded execution of XOR distance. Multi
threaded gains slightly more than a 3x speedup running on 4 cores.

Figure 4: Single v.s. Multi threaded execution of t-SNE. Multi threaded
gains a 2x speedup running on 4 cores.

from executing 20 iterations of multi threaded t-SNE on 4 cores was
0.47s.

5.2 Clustering
We evaluated our technique of generating logical clusters with k-
means from t-SNE visual clusters by measuring it’s accuracy on
our sample trace. The sample trace was taken from a replicated key
value store performing 3 large scale function, initialization where
values are read from disk, followed by 50 puts, and 50 gets. Fig-
ure 5A show a simplified gnu plot rendering of the servers execution.
Figure 5B Shows the results of running k-means on the visual clus-
ters. Initialization is colored yellow, putting is black, and getting is
coloured red. A few points which are visually clustered with both
initialization and putting are logically clustered with getting. Using
manual inspection we consider 6 of the trace points out of 362 to
be classified correctly at an accuracy of 98.3%. We admit that non
perfect classification will lead to incorrectness when inferring cluster
unique invariants. We propose that in the future users be able to
manually classify points, which are visible outliers.

6 DISCUSSION AND FUTURE WORK

limitations Our approach to visualizing distributed state is limited
by computational power. Execution times of t-SNE grow polynomial
with the length of a trace, therefore traces with lengths of tens of
thousands would execute slowly regardless of parallelism. One
heavy handed approach to gain scalability would be to spread out

Figure 5: Clusters generated form a t-SNE clustered program trace.
A) Show visual clusters only connected temporally. B) shows logical
clustering achieved by running k-Means clustering, set for 3 clusters.
Clustering accuracy 98.3%.

t-SNE computation on a cluster. However, the size of the trace
would have to be in the tens of thousands to overcome the cost of
synchronizing state.

Logged state has a limited view of a programs behaviour. All
state collected with our tracing technique must be at the applica-
tion layer and not hidden within binaries. The more state which is
logged, the better our clustering technique responds. Therefore, we
are limited to applications where the majority of functionality, and
interesting behaviour is resident in users application code. One po-
tential solution to this problem would be to analyze a programs stack
and heap at the OS layer. While this would provide a more holistic
view of a programs state during execution it sacrifices important
information such as variable names, log lines, not to mention a state
space explosion.

Allowing users to weight variables manually introduces the possi-
bility of bias and error into our state model. Users with little expe-
rience of the programs they trace may be biased towards variables
which are inconsequential, and could lead to their misunderstanding
of a programs execution. This restricts our users to those which have
a comprehensive knowledge of their software, and are in search of
anomalies and bugs.
future work Clusters generated by t-SNE form a de facto state
machine when connected temporally. Future work could extend
our visualization to abstract clusters away, and present a state ma-
chine, where transitions between clusters were labeled with variables
which caused them. The state of individual clusters could be simply
encoded with their unique invariants. Our current visualization is



limited to a single execution. This approach may be useful for traces
known to contain bugs, and abnormalities, but is arguably poor for
checking subtle differences between multiple executions. Future
work could cluster 2 or more executions together and compare their
clustering transitions for similarities and differences.

7 CONCLUSION

Here we presented a our work parallelizing t-SNE for the sake of
interactive clustering, and a proposed architecture for JavaScript ap-
plications requiring fast responses, and large scale computation. We
improved the interactivity of our clustering visualization by allowing
users to re weight variables based on importance, and by justifying
point distances by reporting per variable distances. addition we
presented our technique for reducing large scale invariant data in our
traces by applying k-means to t-SNE output, and logically analyzing
the unique invariant behaviour of clusters.
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