
DViz: Visualizing Distributed State

Jodi Spacek

Fig. 1. Changes in state over a system execution

Abstract— This paper describes a tool that developers can use to visualize state changes for executions of software deployed in their
distributed systems. The goal of this work is to provide a high level view of a system execution by highlighting changes which give
developers clues about where to look in more finely grained event logs. A scenario is proposed for the goal of providing an interaction
solution where a developer can investigate changes in the state of a system execution using the DViz tool.

Index Terms—Distributed systems, scatterplot, colourmap

1 INTRODUCTION

Distributed Systems are becoming more and more prevalent in industry
with the advent of cloud platforms like Amazon AWS, Google Cloud,
and Microsoft Azure that make it easy for an organization of any size
to house their information in a distributed fashion. The distribution of
data helps to ease the burden of computation on a single machine as
well as removing a single point of failure.

However, these benefits come with drawbacks such as maintaining
consistency of data between machines in a system. It is challenging to
trace an execution in a distributed system because there is no absolute
time to rely on, since servers may be located in different regions in the
world and it is computationally heavy to synchronize to the millisec-
ond. Developers working with a distributed system find themselves
investigating several different machines in a network when the system
behaves abnormally. In a non-distributed system, a developer could
use a debugger to trace an execution in software and view the state of
the system by setting breakpoints. The complexity of asynchronous
communication in multiple instances of a software application deployed
in the cloud makes debugging complex.

My project aims to help developers to visualize the state of their
distributed system over a system execution. It facilitates this in two
ways; 1) by providing a colour map of state changes, and 2) by logically
connecting this colour map to an existing cluster scatterplot and event
log originally built as part of Pangaea.

2 RELATED WORK

2.1 Tensor Flow

Tensorflow provides a data visualization toolkit, TensorBoard, to visu-
alize graphs generated from data flow graphs [1]. While this is geared
towards machine learning and deep neural networks, the tool can be
generalized to suit other types of systems. The graphing visualization
can handle thousands of nodes by collapsing them into a scope. The
grouping of nodes by name scopes contributes to the legibility of the
resulting model. This system relies on the intervention of the developer
to effectively group nodes by their name scopes, and does not infer the
name scopes.

• Jodi Spacek is with UBC. E-mail: jodispacek@gmail.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

2.2 Dapper

Dapper is a tracing tool developed at Google that instruments its soft-
ware to generate trace information [10]. This system can track a system
execution behind the scenes without requiring the developer to add
anything to their programs. It also provides an API along with a web-
based UI that developers can use to query their trace records. However,
this tool is application specific as it is closely tied to the code base at
Google.

2.3 Shiviz

ShiViz is a visualization tool that sits on top of ShiVector, a mechanism
that adds vector timestamps to distributed system logs [7]. ShiViz
provides space-time diagrams of events that occur in a distributed
system using partial ordering information [2]. This finely-grained tool
gives a useful visualization for debugging log data but provides no
inference of state in a system.

2.4 Pangaea

Pangaea is a tool for visualizing invariants in a distributed system
execution [9]. It was developed by two graduate students at UBC
as part of their research in distributed systems. This tool gives the
developer two main views; 1) a process communication graph that
shows communication between nodes, and 2) a cluster scatterplot of
state invariants that correspond to snapshots of a system execution.
This tool does an excellent job of presenting large amounts of data to
the user, however, it leaves the responsibility of the interpretation of
state changes to the developer. It also suffers from a high degree of
occlusion due to its large popups which obscure most of the screen
when viewed.

2.5 Hootsuite

Hootsuite is a social network management company that is built from
small, independent pieces of code known as microservices. Microser-
vices are small and plentiful which makes debugging non trivial [6].
Hootsuite has over 100 instances of 20 microservices deployed in
their system which is hosted by Amazon AWS. During their Hootsuite
hackathon, a team of developers attempted to create a tracing system
similar to Google Dapper. They aimed to leverage their ELK stack,
in particular to use Kibana logs and Graphite visualization tools to
abstract a view of the system [5]. However, it was difficult to customize
graphite and to interpose on all of the messages sent in the system
because their microservices aren’t as uniform as Google’s. In addition,
the visualization tool could not handle the load from all of the logs and



Fig. 2. A sample of Pangaea occlusion.

Table 1. DViz: Data Abstraction

Attribute Name Ty
pe

C
ar

di
na

lit
y

D
es

cr
ip

tio
n

cut categorical 1 - 100 Snapshot of system
node categorical 3 - 5 Unique name for node

variables assorted 50 - 100 state of the system
previous state assorted 50 - 100 Stored link

clusters categorical Unique index ≤ 100

periodically caused the logging system, Kibana, to crash and remain un-
available for hours in production. Therefore, the project was backed out
and the company is still searching for a solution. Developers manually
coalesce logs from multiple nodes to trace executions.

3 DATA AND TASK ABSTRACTIONS

Using Visualization Analysis and Design as a guide, I will describe the
developer drill down task [8]. Following this is the data abstraction that
is represented in the tool.

3.1 Tasks
The main task that a developer can perform in DViz is to investigate
changes in state over a system execution. State in this context refers
to the values of variables that are spread across multiple nodes in a
system. Nodes may also be referred to as hosts, but can more generally
be thought of as servers that host instances of software programs.

A system execution is a sequence of events that are logically grouped
and recorded for analysis over a set period of time. A snapshot is a
slice over all the the nodes at a moment in time. This snapshot occurs
when there are no messages in-flight during a period of inactivity in a
system.

A developer finds a change in the system execution by viewing an
abstraction of the changed variables across the servers. Using this
information as a clue, the developer can gather more context around
this snapshot in the clustering view. The clustering view provides more
information on all of the variables at this point in the system execution.
From the snapshot in the clustering view, the developer can navigate
to the event log which includes more finely grained information in
the process communication view. This process communication view
includes all of the sends and receives between the nodes in the system
when the snapshot was recorded.

3.2 Data
The data in this system is parsed from JSon files that are generated
by an external program, Dinv [3]. DViz takes this data and uses it to
generate the process communication log, the timecurve clustering view,
and the changes matrix. Table 1 outlines the absolute and derived data
used in the visualization.

Table 2. DViz: Marks and Channels

Attribute Channel

Variable x-axis
Snapshot state y-axis

Degree of Change Hue, Luminosity

Fig. 3. A change matrix with a highlighted green cell of significant change.

The JSon data is static and is stored in an external web server. It is
retrieved using an API call that returns a stored JSon file. This data has
been manipulated by the DInv algorithms to generate unique invariants
for the variable states which are in turn used in the cluster visualization.
The raw data is also sent with the static JSon and it is this data that is
used to detect changes in state.

The JSon file represents all of the data sent and received during a
system execution. The top level of the JSon file is a cut, also referred to
as a snapshot. These snapshots are ordered using vector timestamps that
have been added to a software program. The data generally contains
up to 100 snapshots per JSon file. Each cut contains the set of nodes
that communicate with each other during the system execution. Each
node has its own independent set of unique variable values. Data is
organized per node in the raw data.

The data is filtered by changed values from an older snapshot to a
more recent one. This filtering is performed before the data is presented
to the developer thus it requires no interaction on the user’s part. Ta-
ble 3 outlines the channels used to display the variables once they have
been filtered for changes.

4 SOLUTION: CHANGES MATRIX

The changes matrix solution provides a way for developers to better
navigate the clusters and event logs in Pangaea. It describes, at a glance,
volatility in a system execution which can be used to investigate the
cluster scatterplot. Cells in the table correspond to the degree of change
for a variable across all the nodes at a particular snapshot. Hue and
saturation changes from a light yellow to a dark red to indicate a higher
degree of changes in the normalized calculation.

4.1 Derived Data: Changes

Changes are detected across nodes per each snapshot. For example,
if only one node has a change in a variable value, the change will
still appear in the changes matrix. This is done because it is generally
important for all nodes to have the same value for their variables,
which is known as consistency. There are some special cases that are
exceptions to this rule, eg. a leader is elected in a system and only
one node should have a leader flag set to true. However, in this case
we would want this leader change to be visualized because it is an
important event in leader elections.

The sum of the variable values in each node were compared
against the sum of the variables in the previous snapshot. Once the
change is calculated, the value is normalized from 0 to 1 using feature
scaling [11]. A maximum X value was stored for the variables and
used in the calculation below. The minimum was set to 0 because all of
the variables were larger than zero.

X ′ =
X−Xmin

Xmax−Xmin



Table 3. DViz: Analysis

System Changes Matrix

What: Data Sequential snapshot data points
What: Derived Changes between current and previous snapshots
How: Reduce Filter on changed values
How: Encode Colour Map, Saturation and Hue

Why: Tasks Locate, identify and compare changes in state

5 IMPLEMENTATION

The matrix was built using React components which render the HTML
table. The cells of the table were connected to the change calculation.
Additional javascript pages, html rendering methods, and CSS files
were added for the matrix display. The scatterplot javascript code was
modified to change the layout of the popup. The modified code can be
found at a forked version of Pangaea [4].

5.1 Pangaea Changes

In addition to the changes matrix, a couple of improvements were made
to the Pangaea interface. Two visual components of the Pangaea system
were reworked to improve the user experience; the clustered scatterplot
and the process communication graph.

The scatterplot and process communication components were moved
closer together to use all of the available real estate. The size of
the snapshot point popup in the scatterplot was minimized so that it
would not occlude as much of the background. The background of the
popup was made partially transparent so that the scatterplot and process
communication components are more visible.

The layout of the data in the popup was rearranged so that is it ag-
gregated by the variable rather than the node. This involved reworking
the JSon data which is grouped by node. This reorganization facilitates
side by side comparison of variable values at each node which gives
the developer an easier view of the state changes.

5.2 Task Breakdown

In this project, my teammate Stewart and I started at opposite ends of
the tool we proposed. My tasks involved the Javascript front end coding,
as well as connecting to the Pangaea server. Stewart’s code involved
improving the algorithm that generates the cluster scatterplots. We were
unable to meet in the middle in order to connect the Javascript to the
new code. Due to time constraints, I decided to focus on improvements
to the Pangaea system in order to provide something useful to the
developer in the visual realm.

6 RESULTS

Table 3 is an analysis of the changes matrix. It uses the raw JSon
data that existed in Pangaea to derive normalized change data between
two snapshots. This change data is used to filter the variables values
so that only the changed values are displayed. This helps the user to
identify changes in a system execution and it also provides a side by
side comparison so that changes can be compared.

The developer uses information from the changes matrix to navigate
to the relevant snapshot point. Clicking on this point in the cluster
scatterplot gives the developer more information about the states of all
of the nodes. A possible scenario begins with a developer who notices
that one of the nodes is out of sync with the others in the system.

The user clicks the snapshot point in the cluster scatterplot that
corresponds with the state number in the change matrix. The process
communication changes to display the event in the graph that matches
the snapshot point. The developer can hover over the node’s vertexes
to view the information that was passed from node to node. This finely-
grained information reveals details on the behaviour of the system.

The user can follow the links between the snapshots in the cluster
scatterplot to view how the system changes over time.

Fig. 4. An example scenario where the user is viewing details of a
snapshot.

Fig. 5. A view of the change matrix where clicking on a cell links the user
to the corresponding snapshot point.

7 DISCUSSION AND FUTURE WORK

A feature that would have been very helpful would be to implement
linked highlighting between the changes matrix and cluster scatterplot.
With this addition, the user would be able to easily view the point in the
cluster scatterplot. Without this linkage, developers must guess where
the correct snapshot point is in the scatterplot. Since the scatterplot has
points that are on top of each other, points in the foreground occlude
those in the background. It is possible that a point of interest is hidden
behind some other point and the developer would not be able to drill
down into the details.

Another addition would be to extend the change comparison across
more than the previous point. The change value could incorporate more
than one previous point’s data by storing a cache of changed values.
A weighted average would be a nice choice to show the degree of
change over the entire systems’ execution. A user could select multiple
snapshot points for comparison.

8 CONCLUSION

This work provides an abstraction of change in a system execution to
guide developers to areas of interest. The aim of the changes matrix is
to ensure that the developer isn’t asking questions like ”How has my
system changed?”. Instead, this tool aims to help them to answer the
question ”Why did my system change?”.

Minimal changes were made to the original Pangaea visualization
tool that make a big impact on the usability of the tool. These changes
remove occlusion and provide a view that is easy to compare changes
in state.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.



[2] J. Abrahamson, I. Beschastnikh, Y. Brun, and M. D. Ernst. Shedding light
on distributed system executions. In Companion Proceedings of the 36th
International Conference on Software Engineering, pp. 598–599. ACM,
2014.

[3] Dinv. https://github.com/wantonsolutions/dinv-etcd, 2017.
[4] Forked version of pangaea. https://github.com/jspacek/Pangaea,

2017.
[5] Elk stack 101. http://code.hootsuite.com/elk-stack-101/,

2017.
[6] Logging contextual info in an asynchronous

scala application. http://code.hootsuite.com/

logging-contextual-info-in-an-asynchronous-scala-application,
2017.

[7] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 21(7):558–565, 1978. doi: 10.1145/359545.359563

[8] T. Munzner. Visualization analysis and design. CRC Press, 2014.
[9] Pangaea. https://github.com/zipengliu/Pangaea, 2017.

[10] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc., 2010.

[11] Normalization. https://en.wikipedia.org/wiki/

Normalization_(statistics), 2017.

https://github.com/wantonsolutions/dinv-etcd
https://github.com/jspacek/Pangaea
http://code.hootsuite.com/elk-stack-101/
http://code.hootsuite.com/logging-contextual-info-in-an-asynchronous-scala-application
http://code.hootsuite.com/logging-contextual-info-in-an-asynchronous-scala-application
https://github.com/zipengliu/Pangaea
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normalization_(statistics)

	Introduction
	Related Work
	Tensor Flow
	Dapper
	Shiviz
	Pangaea
	Hootsuite

	Data and Task Abstractions
	Tasks
	Data

	Solution: Changes Matrix
	Derived Data: Changes

	Implementation
	Pangaea Changes
	Task Breakdown

	Results
	Discussion and Future Work
	Conclusion

