
Visualizing Distributed State

Jodi Spacek
jodi.spacek@gmail.com

Stewart Grant
sgrant09@cs.ubc.ca

1 Introduction and Motivation

Developing and maintaining distributed systems is a dif-
ficult task due to the inherent complexity of concurrency
and non-determinism. These factors complicate our com-
prehension of how a distributed system behaves. Devel-
opers lack a range of tools to provide insight about the
state of a system during its execution. This lack of insight
makes triaging bugs an arduous task because it creates
the need to manually inspect multiple, dispersed server
logs. Visualization is useful for quickly articulating infor-
mation. Dviz is a visualization tool for distributed sys-
tems. Dviz uses logs of state and time to generate an ap-
proximate FSM mined from a system execution. FSM
states are generated by differentiating the state and plot-
ting these states on a plane. This provides a clustering of
similar states. FSM states are also linked via a time curve
which connects all of the states linearly. Users inspect
states by examining concrete variable values at individ-
ual points along the curve. This implementation only ap-
proximates an FSM and does not provide a query interface
for the rich data, such as data invariants which are readily
available. We propose that Dviz’s utility can be greatly
improved upon by adding a flexible query language and
by partitioning the time curve into a labeled FSM. These
extensions to DViz facilitate user interaction and aggre-
gate time curve information in a meaningful way.

2 Background

Distributed Snapshot algorithm proposes that consistent
distributed state can be captured without interfering with
the execution of a system itself [2]. Distributed snap-
shots can be computed online or mined from a log con-
taining vector clocks. Mining provides a partial ordering
of events in a system [8]. We consider distributed snap-
shots as a fundamental granularity for examining consis-
tent state. Our state analysis technique is therefore applied
at the level of a distributed snapshot.
Dinv is a tool that detects likely data invariants in dis-
tributed systems [5]. Dinv operates by instrumenting dis-

tributed systems to log system state and vector clocks.
Execution logs from the nodes of the system are merged
together, and the state of the system is reconstructed
and output as a distributed system trace. Dinv leverages
Daikon to automatically infer data invariants on the trace.
We plan to use Dinv as a tool for capturing distributed
state.
Dviz is a visualization tool that plots distributed snapshots
mined by Dinv onto a 2D plane. The position of each
snapshot is determined by a XOR distance function. The
distance between all states are computed then each state
is plotted so that a the triangular inequality holds for all
states. t-SNE clustering is used to compute snaphot posi-
tion [7]. Each point is linked by a time curve [1]. Each
point is also color coded based on their temporal ordering.
The first snapshot is colored bright red and the final snap-
shot is dark brown. All intermediate points are colored
with linear interpolated luminosity. Figure 1 is a Dviz
plot generated from the execution of the etcd key value
store [3]. The plot was generated from a test execution of
50 put requests followed by 50 get requests. Put requests
compose the bright red cluster, while the dark brown cor-
responds to Get requests. Initial and final states are en-
coded by encircling them with blue. In its current imple-
mentation, Dviz has no facilities for automatically label-
ing clusters, making their significance a mystery to users.
Further salient information about the similarities and dif-
ferences of clusters is only attainable through the manual
inspection of individual states. Labeling each cluster with
cluster specific information, and allowing users to query
features of the graph helps to contextualize the visualiza-
tion.

3 Proposed Approach

Our goal is to improve Dviz by extending it. In this sec-
tion we propose a labeling strategy for clusters, and tran-
sitions between clusters. Additionally we propose a query
interface for exposing cluster, and inter cluster informa-
tion to users.
FSM: Dviz’s time curve is composed of clusters of states

1



Figure 1: Time curve, with 2 clusters, generated from an
etcd raft cluster processing 50 put requests, followed by
50 get requests.

and temporal transitions between states. Clusters form
de facto macro states, such as in Figure 1, in which the
bright red cluster represents the ”system is servicing put
requests” state. Clusters, and cluster transitions form a
partial FSM of an execution. A complete FSM includes
labels for each cluster, and state transition.
Separating Clusters: In order to separate visual clus-
ters into logical clusters we propose the use of k-means
clustering [6]. Each individual state is identified only by
it’s distance to each other state. K-means buckets based
on a minimization of distance between states. K-means
does not take into account the temporal relation between
states, and can potentially be influenced by outliers. If k-
means proves to have poor clustering we will experiment
with density based clustering such as DBSCAN [4]. To
measure the quality of either clustering technique we will
complain them to manually annotated executions where
the state of the system is known.
Labeling Clusters: Distributed snapshots contain vari-
able values for each machine in the cluster. Distributed
data invariants of each cluster can be automatically in-
ferred using Dinv. To generate labels for each of the clus-
ters we propose the use of Dinv’s invariants. Lables for
each cluster will consist of of the set of invariants which
are unique to a given cluster. Dinv infers a large number of
invariants, this approach has the advantage of producing
unique labels, and reducing the visual clutter generated by
redundant labeling.
Labeling Edges: Edges between clusters also require
labels to encode state transitions. The difference of in-
variants between clusters can be used to label the state
transition. Using invariants to encode the transition has
the advantage of keeping users in the context of data in-
variants, while clearly delineating between states.

Querying Data Invariants: Without substantial knowl-
edge of a system, and the properties of it’s execution it is
hard to determine what caused a cluster to appear, dis-
appear, or move. Our goal is to answer why and why
not questions about the time curve [9]. We propose the
use of two forms of interactive queries to achieve this
goal. For example a user may ask the question ”why does
this cluster exist?”. The answer to this question is po-
tentially complex; a complete justification requires infor-
mation about distributed dataflow, and the values of indi-
vidual variables. A simpler approximate answer can be
given by examining invariants which hold on the cluster
and identifying them throughout the execution. For ex-
ample if on one cluster the invariant on two integer vari-
ables A and B, was A > B, and on all others A < B
held, a likely answer for the clusters existence is the in-
variant violation. This property can be encoded visually
by popping out points in the time curve where the casual
invariant was violated. To cause the states to pop out, the
luminosity of all other points will be decreased while the
query result will have its luminosity increased.

In addition to ”why, and why not” questions we propose
supporting ”where” queries. Users can supply queries of
the form ”where does X hold true”, where X is an invari-
ant. Such queries will be answered using the aforemen-
tioned pop out technique.

4 Scenario of Use
Step 1

User views the clustering of system execution states
and notes and anomaly with an extraneous end state.

Figure 2: Time curve, with 2 clusters, generated from an
etcd raft cluster processing 50 put requests, followed by
50 get requests.

Step 2 In Figure 3, the user enters a query to show the
leader status where it is equal to true.
Step 3

2



Figure 3: User selects the extraneous points and inputs a
query.

The user can see that once the leader status is filtered,
the points that do not belong are removed.

Figure 4: Time curve, with 2 clusters, withe filter applied.

5 Timeline
• March 6 Write and revise proposal

• March 13 Run clustering experiments and choose al-
gorithm

• March 20 Build support for cluster invariant analysis

• March 27 Develop FSM labeling

• April 3 Develop query engine and popout

• April 10 Compose a user study

• April 17 Start writing report, running study

• April 24 Compile evaluation results

• April 28 Submit report

6 Developer Skills
He we (Stewart Grant, and Jodi Spacek) overview our do-
main skills, in first person.

6.1 Stewart’s Skills
For the past 2 years I have been a member of the NSS
lab working with Ivan Beschastnikh. I work primarily at
the intersection of software engineering and distributed
systems. During my research I have built Dinv a dis-
tributed system specification miner, and other tools for un-
derstanding and testing distributed systems. In the fall of
2016 I took Ivan’s distributed systems course and worked
with Zipeng Liu on Dviz. Most of my work was concep-
tual and computational although I did have a hand in some
of the visual components of Dviz. All of my Infoviz train-
ing has been built up by working with Zipeng, and taking
547 this semester.

6.2 Jodi’s Skills
I’ve been working with Ivan Beschastnikh for the past
year, as well as for a directed studies project during my
undergrad. My interests lie in programming languages
and distributed systems. During my 10+ year stint as a de-
veloper in industry, I learned about useful and not so use-
ful development tools. One of the systems I helped build
at Hootsuite was a tracing visualization tool for their mi-
croservices infrastructure. I’m particularly motivated in
building tools for software engineers to help them com-
prehend their distributed systems.

References
[1] B. Bach, C. Shi, N. Heulot, T. Madhyastha,

T. Grabowski, and P. Dragicevic. Time curves: Fold-
ing time to visualize patterns of temporal evolution in
data. IEEE Transactions on Visualization and Com-
puter Graphics, PP(99):1–1, 2015.

[2] K. M. Chandy and L. Lamport. Distributed snap-
shots: determining global states of distributed sys-
tems. ACM Trans. Comput. Syst., 3(1):63–75, Feb.
1985.

[3] Coreos. Distributed reliable key-value store for
the most critical data of a distributed system.
https://github.com/coreos/etcd, 2013.

3



[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters a
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, pages 226–
231. AAAI Press, 1996.

[5] C. H. Grant Stewart and B. Ivan. Dinv: distrubted
invariant dector. https://bitbucket.org/bestchai/dinv,
2016.

[6] J. A. Hartigan and M. A. Wong. Algorithm as
136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[7] L. v. d. Maaten and G. Hinton. Visualizing data us-
ing t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605, 2008.

[8] F. Mattern. Virtual Time and Global States of Dis-
tributed Systems. In Parallel and Distributed Algo-
rithms, pages 215–226, 1989.

[9] B. A. Myers, D. A. Weitzman, A. J. Ko, and D. H.
Chau. Answering why and why not questions in user
interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’06,
pages 397–406, New York, NY, USA, 2006. ACM.

4


