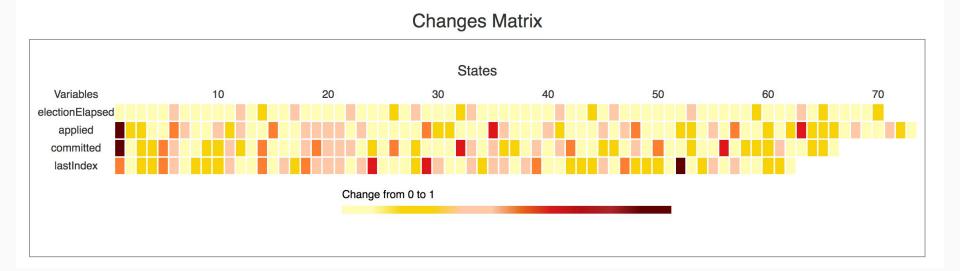
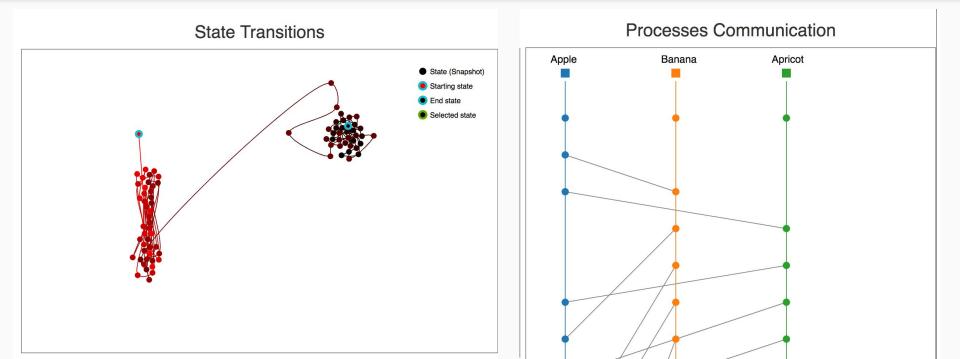
DViz

Jodi Spacek and Stewart Grant


Reasoning about Distributed Systems

Why are distributed systems are difficult to reason about?


- Time
- State
- Nodes

What do we want to see in a system execution?

Changes over a System Execution

System Execution Drill Down

Navigating Change

Demo time!

Pangaea

Absolute Data View

Pangaea

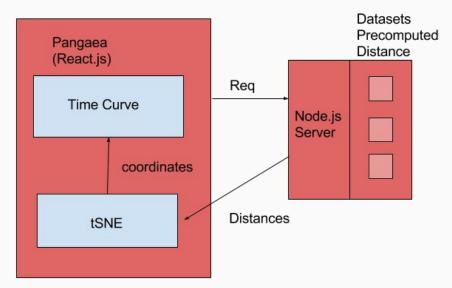
angaea Selected Instances About	State of	Node 71					
	Vecto	or Clock	C				
State Transitions			Apple	Banan	а	Apricot	Processes Com
			523	1017		522	
			523	1024		526	
			519	1018		526	
		Node Variable Type Value					
		Apple-r.Term		i	int	2	
		Apple-r.Vote		i	int	-9223372036854776000	
		Apple-r.checkQuorum		1	boolean	true	
	*	Apple-r.electionElapsed		i	int	1	
		Apple-r.electionTimeout		i	int	10	
		Apple-r.heartbeatElapsed		1	int	0	
		Apple-r.heartbeatTimeout		i	int	1	
		Apple-r.id			int	-9223372036854776000	
Invariant Graph	Apple	Apple-r.lead		i	int	-9223372036854776000	
		Apple-r.leadTransferee			int	0	
		Apple-r.pendingConf			boolean		
<u>_</u>		Apple rreftling applied			int	150	

Analysis

What: Data	Sequential (time curve) data points
What: Derived	Change between current and previous point
How: Reduce	Filter on changed values
How: Encode	Colour Map (table format), Saturation and Hue to represent degree of change
Why: Tasks	Locate, identify and compare changes in state

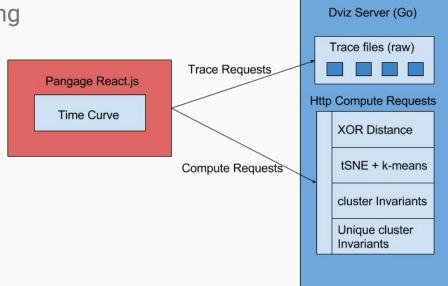
Limitations

- Matrix to Timecurve connections
- Support for multiple (> 80) snapshots
- Handles systems with expected changes (eg. elections)


Interactivity and Data Refinement

Motivation

- Static visual prevented users from exploring datasets
- Why points are distant is mysterious
- Time curve computation was slow (8min for a 60s execution)
- Visual clusters lack identification information

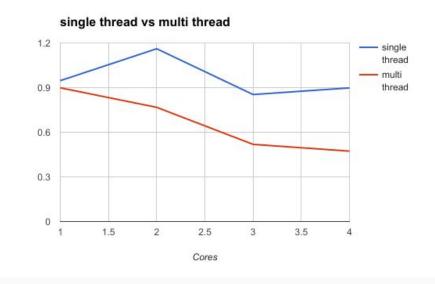

Slow Visualization (Thanks JavaScript)

- Precomputed distances
- tSNE too slow for large traces

Thin Client with Go Backend

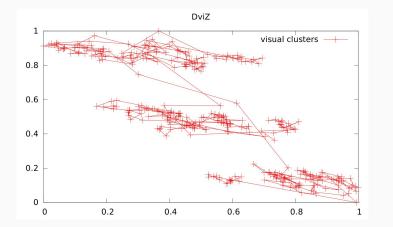
- Decouples compute and rendering
- Fast parallel compute

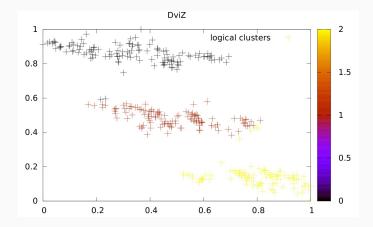
XOR improvements


- Prior XOR took minutes to compute
- All variables treated equally regardless of importance
- Variables contributing to distances were hidden

XOR improvements

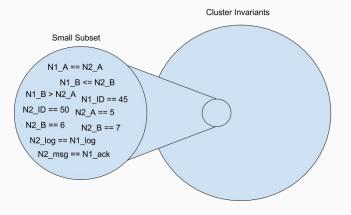
- Optimized single threaded 20x speedup + multi-threaded scalable
- Distance coefficients $\sqrt{v_1^2 + v_2^2 + \ldots + v_n^2} \rightarrow \sqrt{(c_1v_1)^2 + (c_2v_2)^2 + \ldots + (c_nv_n)^2}$
- Causal variables


tSNE Improvements

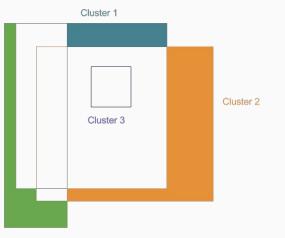

- tSNE in JavaScript is slow, we moved to a Go implementation
- Go was still too slow for large traces, We implemented parallel tSNE
- 5x faster in Go

Newly Derived Data (Logical Clustering)

- tSNE generates visual clusters which cannot be further processed
- clustering tSNE coordinates with K-means allows for further processing



Cluster Invariants


- Logical clusters corresponded to similar stages of an execution
- Using Daikon we can identify data properties on individual clusters
- Logging tones of state leads to tons of invariants! (~300 per cluster)

Unique Cluster Invariants

- Compare all logical clusters to identify unique invariants.
- # of unique invariants is small enough to present to users (0 -10 per)

Summary

Interactivity:

- 8 min -> 10s xor + tSNE
- Variable weighting, and distance Causality

Data Refinement:

- Logical cluster detection
- Cluster Invariants
- Unique Cluster Invariants