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Abstract—All risk estimates contain some degree of uncertainty, but this information is rarely, if ever, provided to patients. We 
present a novel tool with which developers of decision support tools can use to decide which visualizations best fit within their given 
disease context. We developed the tool in the context of atrial fibrilation, but the techniques used are generic in the sense that they 
could be used in other disease processes. We use violin plots, gradient charts, and icon arrays as representantations of risk, and 
offer a toolbox that allows users to interact and adjust the parameters associated with the uncertainty around each risk estimate. 
The tool was deployed on our personal website on a free subdomain, and uses standard web technologies so that users can 
access the tool in a browser as opposed to downloading a standalone application. 

 

1 INTRODUCTION 
In recent years, the physician-patient relationship has dramatically 
changed, in that patients are encouraged to participate in therapy 
decisions related to their health issues [1]. This phenomenon, termed 
shared decision-making, often follows a familiar formula: 
 

1. Provide patients with some background information 
relating to their health issue. 

2. Present patients with the available treatment options, 
including risk estimates related to the benefits and harms 
of treatment. 

3. Ask patients to choose which treatment option they think 
best aligns with their personal preferences. 

 
Often, this formula is implemented in the form of a decision support 
tool (DST), usually available online as an interactive online 
instrument. The process of weighing the pros and cons of potential 
treatment options inherently requires a cognitive trade-off, in which 
the potential benefits of treatment must outweigh the potential risks. 
While the International Patient Decision Aids Standards suggest 
including risk estimates in all DSTs [2], there is always a degree of 
uncertainty when it comes to health, and it is crucial that this 
uncertainty be conveyed to the patient. Much like in the world of 

finance, heterogeneity amongst the population produces individuals 
on the spectrum of risk-seeking to risk-averse, and having a 
thorough understanding of treatment-related risks would likely 
improve patient satisfaction with respect to their final treatment 
decision. 
Conceptually, uncertainty can be difficult to understand without 
some form of visual aid. Typically, the literature differentiates first-
order, or aleatory uncertainty to second-order, or epistemic 
uncertainty. First-order uncertainty is a form that arises due to an 
inherent variability in the general population. If we know that 5 out 
of 100 people will experience some side-effect, we do not know 
which 5 out of every 100 people it will be. This is an example of 
first-order uncertainty. Second-order uncertainty arises due to a lack 
of information regarding the point estimate. If we have a point 
estimate that indicates 5 out of every 100 people will experience 
some side-effect, it might actually by 3 or 7 out of every 100 people. 
In reality, point estimates will always have some confidence interval 
surrounding them, which corresponds to the second-order 
uncertainty in the risk estimate. In patient-oriented DSTs, the 
uncertainty surrounding a risk estimate is often provided as a simple 
textual representation, using phrases such as “about 5 in 100 people 
experience some side-effect” [3]. While it is  commendable that the 
developers of these tools acknowledge that there is uncertainty in 
the risk estimate, simple textual depictions are insufficient to 
properly convey the degree to which uncertainty effects the point 
estimate presented. 
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Fig. 1. Default view of the developed tool to understand uncertainty. The toolbox view appears on the left, while the 
visualization comparison view appears on the right. 



 

2 RELATED WORK 
While the issue of uncertainty is often raised in visualization 
research, encoding it within visualizations has proven to be difficult. 
Research has identified that a major constraint to representing 
uncertainty is the additional dimension required [4]. In the case of a 
single point estimate representing a risk, an error bar that conveys 
uncertainty around the y-value changes the data mark from a point 
to a line. Similarly, an isoline on a contour map would require an 
area mark to convey the uncertainty around it. As our proposed 
visualization is primarily intended as a tool to convey risk estimates, 
we limited the scope of our literature review to only examining how 
risk and risk uncertainty is visualized. 
Johnson and Slovic [5] were one of the first groups to investigate 
layperson understanding of uncertainty in risk estimates. While their 
research was done in the environmental risk domain as opposed to 
risk within a disease or health process, their findings were critical as 
they discovered that trust in risk estimates is significantly affected 
by the presentation of confidence intervals, and especially where 
those confidence intervals fall. Notably, their results indicated that 
ranges that included zero risk were trusted less than those that 
didn’t. Additionally, participants did not appear to distribute equal 
probabilities of risk within the range of a confidence interval. They 
tended to believe values of higher risk within a range were more 
likely than those of lower risk. This lends evidence towards 
ambiguity aversion, in that individuals presented with ranges or 
confidence intervals focus on the extremes of those ranges. 
Additionally, this might indicate that encodings that properly 
represent the probability at specific points within the confidence 
interval might aid participants in understanding what the underlying 
distribution could look like. 
One study by Han et al. [6], looking at the effects of communicating 
uncertainty in individualized colorectal cancer risks, compared 
textual representations of uncertainty with gradient bars. Results 
indicated that when presented with gradient bars as opposed to 
simple point estimates, participants perceived their actual risk of 
cancer to be lower, which was contrary to what the authors 
hypothesized and inconsistent with the theory of ambiguity 
aversion; a phenomenon in which people avoid ambiguous or 
uncertain outcomes. This suggests that optimal representations of 
uncertainty may be able to better inform patients with respect to the 
underlying data, while simultaneously minimizing the issue of 
ambiguity aversion that has been well documented in the literature. 
Correll and Gleicher [7] investigated the drawbacks of using 
traditional error bars to convey uncertainty, and assessed how 
alternate encodings might improve understanding within a general 
audience. They hypothesized that gradient bars and violin plots, 
which better represent the probability distribution around a point 
estimate compared to confidence intervals, might lead to better 
inferences regarding the mean and error of the data. The results of 
their study indicated that encodings that portray more detailed 
information about the unlikely outcomes outside the margin of error 
improved the general audience’s performance with respect to 
aligning their expectations with statistical expectations. 
Additionally, they found that encodings that displayed uncertainty 
in a continuous manner were more effective than those that 
displayed uncertainty as individual points, such as in confidence 
intervals. Overall, they found that the general population has the 
ability to make nuanced inferences from graphical data, even in 
cases where visual encodings, such as violin plots, are being 
experienced for the first time. This conclusion is vital, as it provides 
an encouraging baseline with which researchers can expand upon to 
implement new, and hopefully better visualizations. 
An obvious solution to more generally visualize uncertainty is to 
incrementally add and encode the additional facets of uncertainty. 
Kao et. al [8] do this in 3 dimensions, by deforming the 3D surface 
based on its standard deviation, encoding the interquartile range by 
adjusting color hue, and adding an additional line channel to encode 
the difference between mean and median. While this is an effective 

approach in the expert use case, our solution needs to be simple and 
intuitive so that it is understandable from the perspective of a more 
general population, as the intended use of the visualizations are 
within a patient population. We therefore restrict our solution to 2 
dimensions, and make no attempts to visually encode every aspect 
of uncertainty on the same plot. 
Hakone et. Al [9] published a design study in which a patient-centred 
visualization for prostate cancer risk was designed and assessed. 
Their results indicated that visualization was an effective method to 
convey risk estimates in patients with low numeracy and visual 
literacy. They emphasized the importance of balancing readability 
and ease of comprehension, and warned against complex 
visualizations. Their results found that some patients were confused 
when using basic interaction elements such as sliders, and very few 
participants understood a relatively simple temporal area chart. This 
highlights the need for simple visualizations when they are to be 
presented to patients, especially in older population such as cancer 
and atrial fibrillation patients. 
Bansback et. al [3] conducted a review of current decision aids to 
determine how uncertainty is currently being presented. Their 
results indicated that 47% of decision aids reported no second-order 
uncertainty, while the rest reported at least a simple textual 
representation. This was significant, as it indicated that a large 
portion of DSTs reported risk estimates with implications of 
precision, when in fact, said estimates are always imprecise. While 
the degree of imprecision might vary, it is always worthwhile to 
report it as it may influence patient decision-making. 
There exists some research that contradicts the general consensus 
that visualization improves user understanding of risk. Micallef et. 
al [10], in their crowdsourcing study, found that simply adding a 
visualization to a textual Bayesian problem fails to improve user 
understanding of their individual risk, even when the text refers to 
the visualization. They did find, however, that visualizations can be 
helpful if the text contains no numerical values. They tested Euler 
diagrams, frequency grids (icon arrays), and hybrids of the two in 
their design, and found results that were inconsistent with existing 
literature. They emphasized the need for more research in this 
domain. 

3 DOMAIN, TASKS, AND DATASET 

3.1 Domain 
Our domain of focus is in the context of someone developing a DST 
for atrial fibrillation patients. While the tool itself is intended for 
DST developers, the overarching goal is that the visualizations 
within the tool are eventually injected into the DST. As a result, it is 
vital that the visualizations themselves stay simple to a degree at 
which they can be understood by patients, while any interactivity 
and parameter adjustments made within the tool can assume some 
degree of familiarity with statistics and uncertainty.  
In the patient context, significant trade-off must occur between the 
pros and cons of therapy in order for the decision-making to be 
optimal. In atrial fibrillation, patients must decide whether the 
potential benefits of warfarin in reducing stroke risk outweigh the 
risk of major side-effects, including internal bleeding and 
intercranial haemorrhage. The estimates around these risks and 
benefits always have some degree of uncertainty around them, yet 
this is rarely presented to the patient in an objective, easy-to-
understand way. Yet, if the patient were to have access to this 
information, especially when the uncertainty is significant as is 
often the case in new therapies, the effect on the patient’s decision-
making may be enormous. 
In the developer context, careful consideration must be taken when 
choosing which visualization to use in a DST. Visual literacy, 
numeracy, and technological competency must be accounted for, as 
isotypes may be suitable for one population while violin plots may 
be suitable for another. In the case of AF, the majority of patients 
are over 60 years old, so familiarity with uncommon plots such as 



violin plots may dissuade the developer from using such encodings 
to present risk estimates. 

3.2 Data 
The input data for the tool is entirely synthetic, for reasons 
explained in the limitations. It consists of a JSON object, where 
each key at the root level corresponds to a specific attribute 
related to atrial fibrillation. Within each key lies an array of point 
estimates, which represents the percentage change in number of 
patients who experience the given risk or benefit. Note that data 
where the point estimate represents a benefit is negated, so that the 
direction of the data remains consistent, as the data is conceptually 
diverging. The data was synthesized using NumPy, as the library 
provides straightforward functions to sample from a given 
distribution. In the final tool, there were ~4500 unique point 
estimates across all the attributes, though this number can easily 
change by modifying and running the sampling file. The following 
shows a sample of the input data structure: 

 
strokeRisk:  

data: [-24.5, -23.6, -25.4, …] 
bleedRisk: 
 data: [45.5, 25.3, 34.7, …] 
 

While the input data is relatively simple, there was a significant 
amount of derivation required to compute the various variables 
associated with uncertainty. For each disease attribute, we 
calculated the minimum value, maximum value, inter quartile range, 
median, mean, 95% confidence interval, 99% confidence interval, 
and standard deviation. Only a subset of the derived data was used 
by individual visualizations within the tool. 

3.3 Tasks 
Given the domain identified previously, the primary goal of the 
solution is as a tool for developers of DSTs to compare various 
methods of visualizing uncertainty in risk estimates, and choose 
which encodings best fit within their decision support tools.  

Specific tasks include: 
 

1. Compare violin plots, gradient plots, and isotype plots 
when visualizing the entire distribution. As each plot 
encodes uncertainty differently, this should help inform 
the developer as to which plots may be unsuitable. 

2. Adjust the confidence interval of the presented 
uncertainty between 95% and 99%. 

3. Adjust the point estimate presented, between mean and 
median values. 

4. Filter attributes related to the treatment that are not 
relevant, to simulate how a patient may interact with the 
visualizations. 

5. Randomly sample the underlying distribution for each 
risk estimates, to see how 100 actual patients may 
experience the risks and benefits. 

 
Additionally, as each of the attributes governing the amount of 
uncertainty change, the visualizations should update in real time, so 
that developers can see what effect their interaction has on the 
visualizations. 

4 SOLUTION 
Our solution is intended to be used by developers of decision 
support tools who wish to include information regarding the risks 
and benefits of treatment options. 
Based off of the tasks listed in the previous section, our design is 
split into two major components: 
 

• Toolbox view: This view contains all of the toggles and 
interactivity needed to adjust the parameters of 
uncertainty to be visualized. 

 
• Comparison view: This view contains the visualizations 

of uncertainty within the same viewport, so that users 
can directly compare how modifications to the 
uncertainty affect the visualizations. 

4.1 Toolbox view 
The toolbox view appears on the leftmost side of the screen, and 
contains a variety of checkboxes, radio buttons, and standard 
buttons that allow users to interact with and modify the 
comparison view. A screenshot of this view is seen in Figure 2. 

 
The toolbox view is the primary view in which interaction 

with tool happens. The following interaction is supported: 
 
1. Degree of uncertainty radio buttons 

This is where the confidence interval of the data is 
changed between 95% and 99%. This has a direct effect 
on the gradient charts, as the confidence interval grows 
or shrinks, and an indirect effect on the isotypes, as the 
best and worst case scenarios depend on the level of 
confidence. 

2. Point estimate radio buttons 
This is where the point estimate of the data can be 
changed between the mean and median. This has a direct 
effect on all three charts. The y position of the point 
estimate on both the violin plots and gradient plots 

Fig 2. The toolbox view 



 

changes, while the number of people experiencing an 
effect on the isotype visualization changes. 

3. Attributes to compare checkboxes 
These buttons allow filtering of the data. In the default 
case, all attributes are presented across all visualizations. 
These can be filtered down by unchecking these boxes. 
All three charts will update dynamically as these are 
checked and unchecked. 

4. Show 100 random people button 
This button randomly selects 100 individual point 
estimates from the input data, and re-computes the 
statistical measures needed to draw the charts. Each 
visualization dynamically updates when this button is 
clicked.  

5. Show best case scenario button 
This button shows the best-case scenario given the 
currently set confidence interval. “Best-case”, in the 
tool, is the lower end of the current confidence interval. 

6. Show worst case scenario button 
This button shows the worst-case scenario given the 
currently set confidence interval. “Worst-case”, in the 
tool, is the upper end of the current confidence interval. 

7. Reset distributions button 
This button resets the charts so that the uncertainty data 
is computed based off of the entire sample. 

 
An additional component of the toolbox view is a bootstrap 

alert underneath the toggles, informing the user of what their 
current selection of parameters represents. This is necessary to 
ensure that the user doesn’t lose track of what filters and 
parameters they have applied up to this point in time.  

4.2 Comparison view 
The comparison view is where the visualizations themselves lie, 
and where users can compare how uncertainty is presented across 

visualizations. They lie within the same viewport such that 
scrolling is unnecessary. Despite this, they are mobile friendly, 
and on smaller screens, will stack vertically. The entire 
comparison view can be seen in Figure 3. 

Any time a user changes a parameter in the toolbox view, 
some, or all of the charts within the comparison view will update 
automatically to represent the new parameters. Color hue is used 
consistently across visualizations to encode the direction of the 
delta, and was selected based off of suggestions for encoding 
diverging data in Munzner’s Visualization Analysis and Design 
[11]. 

4.2.1 Isotype visualization 
Isotypes, also known as icon arrays in health literature, were 
selected as a primary visualization due to their reported success at 
conveying risk estimates in the health field, especially to older 
visually illiterate populations [12]. Reportedly, their success is due 
to their representation of risk being in the form of natural 
frequencies as opposed to percentage changes. Since a percentage 
change relies on understanding the percentage baseline, and then 
stacking the percentage delta on top of that baseline, it can be 
easily misunderstood, especially in non-experts of the general 

Fig 3. The comparison view. Isotypes, also called icon arrays, are stacked in groups of two at the top of the view. The violin plot is 
below the icon arrays on the left hand side of the screen, while the gradient charts are on the right hand side of the screen. 

Fig 4. Three different 100-person samples from the same overall 
point estimate across two different attributes. 



population. Many DSTs include icon arrays as part of their 
presentation of risk estimates. In the case of traditional icon 
arrays, the point estimate is encoded by the number isotype marks, 
and the direction of the change is encoded by the color hue. 
Unfortunately, in their traditional static form, icon arrays offer no 
additional channel with which we can encode additional attributes, 
namely those associated with uncertainty. In our tool, we resolve 
this issue through the use of interaction. 

Given some pair of estimates, where the point estimate is 
similar, representation with a static icon array may result in an 
incorrect conclusion that the point estimates are equally precise. 
Using the “Random 100 person sample” button in our tool, we can 
get a better idea of what that underlying distribution looks like.  

In Figure 4, two attributes are being compared. The absolute 
value of the point estimate is equal between attributes, when 
comparing the overall sample. In other words, for every 100 
patients, the number of people who are saved from having a stroke 
as a result of treatment is equal to the number of people who have 
a major bleed as a result of treatment. However, this point 
estimate is based off of the entire sample. If we randomly select 
100 people from the underlying sample, and display those selected 
people on the icon array, we gain some insight into the underlying 
probability distribution. In Figure 4, despite the mean point 
estimate being equal when comparing the entire sample, the 
random selections from the sample show that the variability in 
number of patients who have a major bleed varies significantly, 
while the number of patients who are saved from having a stroke 
remains relatively constant. This indicates that there is a higher 
degree of imprecisions around the major bleed estimate, compared 
to the stroke risk estimate. 

4.2.2 Violin Plot 

Violin plots are charts in which the underlying density-trace of the 
data is mirrored across the y-axis, with a box plot displayed inside 
the region, resulting in a shape similar to a violin. In terms of 
abstraction, the width of the violin at a specific y-coordinate 
corresponds to the likelihood that a given selection from the 
distribution will have that y-value. The minimum and maximum 
y-values of the violin encode the minimum and maximum 
probabilities of that attribute effect, according to the histogram 
results returned from D3. The y-positions of the maximum and 
minimum points in the box inside the violin respectively encode 
the 1st and 3rd quartile of the distribution. Finally, the circle mark 
y-position encodes the point estimate, which is either the mean or 
median depending on the toolbox setting.  

Conceptually, violin plots are ideal as far as representing the 
degree of uncertainty in a risk estimate. By visualizing the entire 

distribution, users can get an idea of likelihood across the entire 
range of possible values. Unfortunately, violin plots are not 
common, and many people unfamiliar with statistics may be 
confused as far as interpretation goes. We suggest that developers 
of DSTs think carefully as to whom their target population is, and 
determine whether violin plots might or might not be suitable as a 
visualization medium. In our case, when considering AF, we 
believe that the use of violins may be inappropriate, as the 
population is typically older than 60 years old and most likely 
unfamiliar with these types of charts. 

Vital insight can be obtained from the analysis of violin plots, 
especially when the violin crosses the baseline axis. In Figure 5, 
the violin for the risk of abdominal pain has a significant portion 
of data below the baseline axis. This has serious implication as to 
the certainty of experiencing abdominal pain as a side effect. 
Theoretically, this indicates that the patient may see an 
improvement in abdominal pain as opposed to a worsening.  
Depending on how risk-seeking or risk-averse the patient is, this 
may significantly influence their decision making. 

4.2.3 Gradient Plot 

The gradient plot is constructed as a basic scatter-plot, where a 3-
pixel-high line represents each point on the scatter plot. In the case 
of extremely small confidence intervals, the actual point estimate 
mark can be occluded from the visualization when the point 
estimate isn’t given a minimum height. The point estimate is 
therefore encoded by the midpoint y-position of the 3-pixel high 
line.  A rectangle that is the height of one side of the confidence 
interval is then constructed, and placed on either side of the point 
estimate mark. The opacity at the y-position within the confidence 
interval encodes the probability of the true value being at that 
point, as per the underlying probability distribution.  

While gradient charts better present the probability 
distribution in comparison to standard confidence intervals, they 
are not useful when the confidence intervals are extremely small. 
When that is the case, visualizations that actually present the 
underlying distribution may be more useful. However, in some 
cases, confidence intervals around point estimates may be very 
large, in which case they may provide useful insight to the patient. 
In Figure 6, the confidence interval around the risk of intercranial 
hemorrhage is large enough such that it overlaps that of having a 
major bleed, despite its point estimate being significantly lower. If 
a patient was highly anxious about having an intercranial 
hemorrhage, the large degree of uncertainty around that risk 
estimate may sway them away from warfarin treatment. This is an 

Fig 5. Violin plot: the risk of abdominal pain extends below the 
baseline zero-axis, indicating a potential benefit. 

Fig 6. Gradient plot with large confidence interval around 
intercranial hemorrhage risk 



 

example of a scenario where using gradient plots may be 
appropriate. 

4.2.4 Interactivity 
Through interaction, users can obtain valuable insight into some 
of the intricacies of the uncertainty surrounding their point 
estimates. While means and averages are useful as far making 
general statements goes, DST developers may wish to present 
patients with best-and-worst-case scenarios, as this a typical 
question asked in consult with physicians. In our tool, the best-
and-worst-case buttons have a unique effect on the gradient bars 
in that the gradient bar disappears, and a standard bar chart 
appears showing the requested case. Due to the fact that our data 
is diverging and sitting on opposite sides of the baseline axis, the 
best-case represents the lower end of the confidence interval, 
where the risk of side-effects are minimized and chance of benefit 
is maximized. The reverse is true for the worst-case scenario. An 
example of what these might look like is shown in Figure 7. 

Clicking on the best-case or worst-case button has an impact 
on the following visualizations: 

 
• Gradient charts switch to bar charts displaying requested 

value at either upper or lower end of currently set 
confidence interval 

• Isotype charts switch displays to values equal to 
gradient charts 

 

Clicking on the mean or median radio button has an impact on 
the following visualizations: 

 
• Gradient charts point estimates move along y axis to 

represent newly requested point estimate 
• Isotype charts change value to requested point estimate 
• Circle in box plot within violin moves to represent 

request point estimate 
 
Clicking on the 95% or 99% degree of confidence radio 

button has an impact on the following visualizations: 
 
• Height of confidence interval around point estimate on 

gradient chart adjusts 
• If showing best-case or worst-case scenarios, gradient 

chart bars adjust height corresponding to requested 
degree of confidence 

• If showing best-case or worst-case scenarios, isotype 
charts adjust number of people affected to requested 
degree of confidence 

 
Clicking on the 100-person sample button has an impact on all 

of the visualizations, as all of the uncertainty parameters are 
recalculated based on the new sample, and charts are updated 
accordingly. 

5 IMPLEMENTATION 
To create our tool, we used the following libraries: 
 
 
 
 

1. D3.js: Data-Driven Documents 
This library was used to draw all charts in the 
visualization. Scaling and data-binding functions are 
used extensively. 

2. AngularJS 
This library was used to keep the structure of our project 
clean, along with simple two-way data-binding and 
reusable components through the use of directives. 

3. Underscore.js 
Underscore provided us with some useful functional 
paradigms, without needing to extend any built in 
objects 

4. Bootstrap 
This was used primarily for its grid-layout system, as it 
simplifies HTML page layouts. Some other features, 
such as wells and alerts, were also used.  

5. NumPy 
NumPy was used outside the visualization tool to 
generate our synthetic data, using the numpy.random 
distribution functions. 

 
Of note is that all charts displayed in the visualization tool 

were developed from scratch as reusable components in 
AngularJS directives. No charting libraries were used to aid in 
implementation, apart from what was provided through D3. One 
of the primary challenges was drawing a proportioned outline of a 
personmfor use in the isotype charts, that could rescale as the 
window resized in order to keep the tool responsive. An additional 
relatively complex component was the violin plots requiring the 
use of D3s histogram and area functions, to actually interpolate 
between histogram scale positions and generate a violin. 

Other tools used throughout the development of the tool were: 
 
1. CoffeeScript 

We chose to use CoffeeScript as an alternative to pure 
JavaScript, as it has a cleaner syntax and fewer curly-
braces. 

2. Sublime Text 

Fig 7. Top left: Gradient chart transformed to bar chart in best 
case scenario. Bottom left: Gradient chart transformed to bar 
chart in worst case scenario. Right (top and bottom): Original 
gradient chart 



We used Sublime Text as our text editor to manage the 
project. 

3. Grunt 
Used for its live-reload features in development, where 
files are watched for changes and the development 
server is updated to include those update files. Also used 
for building when it came time to deploy the software. 
This consists primarily of concatenating and minifying 
files. 

4. Apache 
An Ubuntu server running Apache was used to host the 
website, and a subdomain was created corresponding to 
the Apache configuration. 

 
The tool was also designed with responsiveness in mind, and 

each individual visualization tapped into the window’s resize 
event to scale itself to its container. When the window reached a 
width of less than 768 pixels, the elements stacked to keep the tool 
mobile friendly.  

Additionally, the source code is available open-source and 
hosted on GitHub. 

6 SCENARIO OF USE 
In this scenario, Judy, a decision aid developer, has decided that 
she wants to create a decision aid for atrial fibrillation patients. 
She has conducted a large meta-analysis, and has a series of point 
estimates from hundreds of studies for a variety of attributes 
associated with atrial fibrillation treatment. This includes 
estimates for improvements in risk of stroke, alongside estimates 
for chances of side effects including major internal bleed, 
intercranial hemorrhage, and severe abdominal pain. She knows 
that some of these estimates have more uncertainty than others, 
but doesn’t know the degree to which they differ, and isn’t sure of 
the optimal way to present them.  

She loads up our tool, and investigates the entire sample 
across all visualizations. She looks at the gradient chart, and sees 
that the confidence intervals around all 4 of the attributes are very 
small. She thinks that she must have been wrong, and that there is 
very little uncertainty at all in these estimates, but then notices the 
violin plots and realizes her mistake. 

The violin for risk of major bleed extends from 5 out of 100 
people to 50 out of 100 people, in a roughly Gaussian shape, while 
all other violins only cover a 5-person y-distance. To verify her 
concerns, she clicks the “Random 100 person sample” button a 
few times, and notices that in the major bleed attribute, the icon 
array changes drastically each time in the number of people who 
experience a major bleed, compared to the other attributes where 
the delta value remains relatively constant. She decides that, as 
this an older population, she should stick to using icon arrays as 
they have been shown to be effective as conveying risk in older 
populations. She decides to take screenshots of 3 different 100-
person samples, along with a screenshot of the entire sample. She 
injects these images into her decision aid, with a textual 
explanation indicating that these are selections of 100 people from 
actual data, and this is what happened to them, so that patients get 
some understanding of how uncertain the risk estimate s for risk 
of major bleed. 

A patient, Joe, then goes through the tool, as he has just been 
diagnosed with atrial fibrillation and is deciding whether to take 
warfarin or not as treatment. Joe has been a big risk-taker for the 
majority of his life. He sees the risk estimates, and sees that in one 
100-person sample, only 8 people had a major bleed. He thinks 
that maybe he’ll get lucky, and be part of a sample like that. Based 
on his risk-seeking behavior, Joe decides that the pros of warfarin 
therapy outweigh the potential risks, and brings these thoughts up 
with his physician on their next consult.  

7 DISCUSSION, CRITIQUE AND FUTURE WORK 
By examining existing literature on how uncertainty can be 
encoded in risk visualizations, we developed a tool that can be 
used by DST developers to decide which visualizations are 
appropriate for their specific decision aid. The tool was interactive 
such that users could manipulate the uncertainty and identify how 
uncertainty can be encoded across various visualization 
techniques, including isotype arrays, gradient charts, and violin 
plots. 

The primary issue that was encountered through the 
development of this project was with respect to acquiring the data. 
Our initial plan involved using clinical prediction models to 
compare real risk estimates. We invested a significant amount of 
time in researching these models, and settled on two commonly 
used ones for stroke and bleed risk, namely the CHA2DS2-VASc 
[13] and HAS-BLED [14] models. Unfortunately, while these 
models took as input some patient-related parameters and output 
specific risk estimates, there was no uncertainty reported with the 
estimate. Without any information regarding the uncertainty, we 
were unable to visualize anything apart from a point estimate. We 
debated making some assumptions as to what the underlying 
distribution looked like while using real model output values, but 
felt that this would be a misuse of the model and chose to fully 
synthesize our data instead. This has some implications as to the 
generalizability of our tool, as we are unsure how it might perform 
with real risk estimates. Our synthetic data artificially adds high 
levels of uncertainty to some attributes, and while we expect that 
this is something that exists in some disease contexts, including 
atrial fibrillation, we cannot be sure without future research. 

Additionally, our model only presents second-order 
uncertainty, and opts to ignore the first order component. In the 
case of icon arrays, it would be relatively easy to add a first-order 
component. If 20 out of 100 patients experience some side-effect, 
we could randomly select 20 people on the isotype chart, as 
opposed to selecting the first 20 people. The issue here is that 
interpretation may be negatively influenced. If some interaction 
changes that point estimate from 20 to 30, and 30 new random 
people are shaded, the difference between 20 and 30 is less 
obvious when randomly distributed throughout the 100 people. 
Future work could add this level of uncertainty into the 
visualization, and see how users responded to its inclusion. 

Another point of critique is how the visualizations actually 
move from the tool into DSTs. In the case of static charts, a 
simple screenshot or export of the underlying SVG element may 
be sufficient, but in the case where interaction is desired within 
the DST, some other means of export might be necessary. We can 
envision a system in which portable iframes or HTML packages 
can be exported, and then easily included within web-based DSTs.  

Additional future work would involve improving the tool to 
enhance its generalizability. We can imagine a future iteration in 
which a backend is included, allowing users to add their own 
disease attributes and uploaded a dataset associated with that 
attribute. In such an implementation, the scope of the tool would 
not be limited to a single disease process.   

Despite these limitations, we feel that our solution is a good 
first step at visualizing the various attributes associated with 
uncertainty. Due to the fact that uncertainty can’t be represented 
by one single attribute, it is necessary to explore the various facets 
of uncertainty, including confidence intervals and the underlying 
probability distribution of the data. In doing so, users can get 
valuable insight into where uncertainty might exists, and therefore 
pass that on to patients in easy-to-understand ways.    
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