

1

Abstract Convolutional Neural Networks (CNNs) are one of the most popular approaches for object recognition problems.
Despite their increasing popularity, they are widely known as black boxes. This is mainly due to their complex architecture and
the high number of none-linear parameters within a CNN. Recently, a lot of attention has been given to exposing these black
boxes by visualizing their learnable parameters. This project proposes a solution that interactively visualizes the architecture of
the network and allows the user to investigate the parameters of the network layer by layer. The convolutional layers of the
network, which contain learnable parameters, are the main focus of this tool. We visualize these learnable parameters by taking
advantage of multiple recently published methods. Along with the visualization tool, this project provides software to
automatically replicate some of the existing methods for visualizing the learnable parameters and outputs the results in a
compatible format for ease of use in our visualization tool. Our tool is, currently, available for use at
http://35.163.48.45:9374/.

Index Terms—Visual Analytics, Deep Learning, Convolutional Neural Networks, Information Visualization, Machine Learning

I. INTRODUCTION
Recently, Deep Neural Networks (DNNs) have gained
much attention due to their success in tasks such as image
classification and speech recognition. Among different
DNN approaches, Convolutional Neural Networks (CNNs)
are extremely popular, in particular, due to their outstanding
capacity to utilize spatial information. Currently, there has
been a shift in applying bioinformatics data to CNNs [1].
While much success has been achieved in the biomedical-
imaging domain [2] using CNNs, there is ongoing research
in other bioinformatics domains such as genomic sequence,
[3] motifs, and EEG [4] as well.

Despite the encouraging success of CNNs, many still see
CNNs as promising black boxes with little insight into the
behaviour of their internal components. This fact leaves
many researchers relying on trial and error to achieve better
performance and fine-tune the parameters involved. Large
modern neural networks are even harder to study because of
their size. For example, understanding the widely used
AlexNet DNN [5] involves making sense of the values
taken by the 60 million trained network parameters [6, 7].

Consequently, the goal of this project is to create a
visualization tool that allows domain experts to gain a
better understanding of the inner components of any given
CNN for their given input.

In order to achieve this goal, one naive approach is to
feed forward the input up to the desired component inside a
CNN, and then visualize what that component is outputting.
Thankfully, since the input of a CNN is an image, for the
components of the network that keeps the spatial
information of the input, it is possible to produce an output
that is understandable by humans. This output is taken and

converted to a gray scale image. Then we can gain some
insight by a simple side-by-side comparison to the original
input.

However, as described by Mathew Zeiler and Rob Fergus
[7], this naive approach fails to produce easy to understand
images for the learnable parameters located deep inside the
network. Therefore, they propose a more sophisticated
approach, in which visualizing these parameters is possible.
This is done by building a Deconvolutional network, which
takes the raw result of the naive approach (described above)
and projects the result of each component back to the input
pixel space. In this project, an improved version of
Deconvnet called Guided Back Propagation (GBP) [8] is
used as well as the naive approach to visualize the learnable
parameters contained in CNNs.

Consequently, we make the following contributions in
this project:

1. Provide a clutter-free visualization of the over-all
structure of the CNN, which allows users to
interactively investigate different inner
components of the network for a given input.

2. Allow for side-by-side comparison of multiple
techniques for visualizing the learnable
parameters inside CNNs.

3. Provide a set of data generation script, which can
convert any CNN structure to the format that is
consumable by our tool.

4. Provide a web-application deployment so that
researchers can easily use our tool with their
own CNNs and training/testing datasets.

The rest of this report is broken up into the following
sections: Related Works, Domain Background, Data and
Task Abstractions, Solution, Interfaces, Implementation,

ConvLens: Visualizing Inner Components of
Convolutional Neural Networks

Mahdi Ghodsi and Hooman Shariati

Results, Discussion and Future Works, Conclusions, and
Bibliography.

II. RELATED WORK
Visualizing learnable parameters is the most common
approach to better understanding CNNs [9]. In an initial
effort, Erhan and Bengio [10] found that visualizing learned
features based on the concept of activation maximization
could be an effective approach. This concept is based on
looking for an input image from a large data set of images
or a patch from one input image that maximizes the
activation of a given neuron in a layer. This idea is further
advanced by multiple research groups leading to three
branches: Input Modification, Deconvolution, and Input
Reconstruction methods [9].

Input modification methods are based on modifying the
input image and monitoring the changes in the activation of
a given neuron. Changes in the value of activation help
identify parts of the image that are the most important for a
given neuron [10, 11]. Zeiler and Fergus [7] achieved this
by creating a gray square to occlude one part of the image
at a time. By sliding this occlusion square they obtain a
heat-map that is identical in size to the input pixel space
that encodes the values of activations of a given neuron.

Input reconstruction methods break down the image into
smaller patches and reconstruct it by either re-ordering the
patches or replacing the patches of the original image with
other images [12, 13]. The goal of these methods is to
create new images that maximize the activation of a given
neuron. Observing reconstructed images helps users gain
better insight about learned features by a neuron. These
methods have recently gained much attention by several
research groups that propose modification to the original
approach with the goal of keeping reconstructed images
human interpretable [6].

Deconvolutional networks (described in Introduction),
also widely known as Transposed Convolutional networks,
refer to a multi-layered Deconvolutional network to project
the feature activations back onto the input pixel space for a
trained network. This technique reveals the input stimuli
that excite individual feature maps at any layer in the model
[14]. This method has been further improved to
accommodate more models and produce easily interpreted
images. GBP is a state of the art methodology within the
family of Deconvnets [8]. We implement this method in our
tool.

Up to this point, we have discussed the state of the art
methods of visualizing learnable parameters within
convolutional layers of CNNs. While feature visualization
remains the most common approach in visualizing CNNs,
less attention has been given to visualizing the overall
structure of CNNs and the relationship between neurons
within the network. Google’s Tensorflow (an open source
software library for machine learning) is complemented by
a visualization tool, called Tensorboard, which visualizes
the overall structure and relationships within the network
[14].

CNNVis [15], ReVACNN [16], and a 3D tool proposed
by Harley [17] are some other visualization tools that are

capable of visualizing the structure of the networks, the
relationship between the neurons, and the learnable
parameters in each layer. Despite the valuable insights that
these tools provide, each of them suffer from at least one
major weakness that discourages users from taking
advantage of their strengths. It is also worth mentioning that
none of these tools are capable of including more than one
of the methods discussed in this section for visualizing
learnable parameters.

A major weakness of both Tensorflow and ReVACNN is
the presence of visual clutter due to the use of node-link
diagrams to show relationships between all of the neurons.
CNNVis is not scalable for large networks since the images
produced for visualizing learnable parameters are too small
to view. Finally, Harley’s tool is a 3D visualization of the
network. This tool suffers from occlusion due to the nature
of 3D visualizations. Rotating the view (to see the structure
from different angles) results in occlusion of inner layers by
outer layers. Furthermore, interacting with the 3D objects,
in a lot of cases, leads to the user losing context of where
they are within the overall structure of the network.

Since one of the goals of this project (as described in our
Data and Task Abstraction section) is to visualize how the
CNN reacts to a given input, Deconvolutional method is the
only technique that satisfies our requirements. In this
project, after careful review of these methods and existing
tools, we decided to use GBP and Filter Map activations.
The rationale behind these choices is explained in more
details in the Solution section of this report.

III. DOMAIN BACKGROUND
This section aims to deliver a brief summary of the
architecture of CNNs and the types of data that CNNs
contain. The contents described in this section are the
summary of an online course offered by Stanford
University, CS231n: Convolutional Neural Networks for
Visual Recognition [18].

There are several main operations that take place within a
CNN, all in a specific order. In a modular design of CNNs,
each of these operations lies within a module, which is
referred to as a layer. However, in the literature, there is an
inconsistency in the grouping of different operations into
layers. Some publications combine several operations in a
single layer, while others dedicate a distinct layer to each
operation. In the context of this project, in order to avoid
any confusion, we will dedicate a distinct layer for each
operation.

Each layer has a set of parameters. Some of the layers
have fixed parameters while others have learnable ones.
The following section briefly describes the common layers
in CNNs.

A. Convolutional
This layer is responsible for convolutional operations,
which are performed using grid-like windows of weights
that slide across the input image. This window is commonly
referred to as a convolutional filter. The filter slides across

3

the image with a predefined step size. This step size is
referred to as stride. The output of this operation is the
result of the dot product between the entries of the filter and
the pixel values of the input image. The result of this
operation is called the feature map or activations of a
filter.

CNN designers have the freedom to choose the number of
filters in each layer, the window size, the stride, and the
padding size, which as the name suggests refers to the
operation of adding zero padding around the input image.
Fig. 1 [19] illustrates the operation of convolution on an
input image of size 5x5, by a filter of size of 3x3, stride size
of 1 and padding size of 0. The green area illustrates the
image. The yellow area is the filter window containing the
small red values indicating the filter weights. Finally, the
pink window, labeled as “convolved feature”, is the result
of the convolution, which is basically the feature map or
activation of the filter. It is, also, worth noting that all the
weights in each filter are learned during the training
process.

Fig. 1. Illustration of convolution1

B. Non Linearity
This layer is also commonly referred to as the activation
function. The most popular activation function used for
CNNs is the rectified linear unit (ReLU); an element-wise
activation function that sets the negative values to 0 and
retains the positive values.

 (1)

This layer comes after the convolutional layer and is
applied to every element/weight in each window. There is
no learnable parameter in this layer.

C. Pooling
Pooling layer reduces the dimension of the input. The most
popular pooling is maximum pooling. In this operation a
fixed window size is defined, and then an empty window of
this size is slid over the input to cover the entire pixel
space. For each stride in this process, the maximum value
within the window is extracted. Fig. 2 illustrates the process
of max pooling for an input of window size 4x4, pooling

1 Retrieved from Deep Learning Tutorial available at

http://ufldl.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif.

window of 2x2, and stride of 2. The colour-coding of red,
green, yellow, and blue indicate when the pooling window
is placed on top of the input. For each coloured window, the
maximum value is picked. The result of this operation down
samples the original input from window size of 4x4 down
to window size of 2x2. Finally, the CNN designer chooses
the pooling window size, and the stride. There are no
learnable parameters in this layer.

Fig. 2. Illustration of Max Pooling2

D. Fully Connected
This layer acts just like traditional neural networks. Within
each layer, there exists a set of blocks. These blocks are
commonly referred to as neurons. Each neuron contains a
vector of size equal to the number of inputs. The output of
each neuron is the sum of dot product between the input
values and the entries of the vector. The CNN designer
chooses the number of neurons in each fully connected
layer. In addition, all the weights in each neuron are
learnable.

E. Normalization
This layer, as the name suggests, normalizes the input. This
operation happens for a given window size. The designer
can choose to have the operation happen in one selected
window or across multiple windows. In this operation all
the elements in a given window are replaced with a
normalized value, obtained using the elements in the
normalization window.

F. Dropout
This is a very simple but effective layer in the architecture.
The role of this layer is to avoid memorizing (also known
as over fitting) the examples during the training process.
This layer only takes a probability value. According to the
probability value, it sets the value of the inputs to zero. The
CNN designer sets this value.

G. Softmax and Classification
Softmax and Classification layers are usually the last two
layers in the architecture. These two layers work together

2 This image was retrieved from an online course, Convolutional

Neural Networks, Stanford University. Retrieved From
http://cs231n.github.io/convolutional-networks/

to produce the final output for a network that approximates
a classification problem. The Softmax layer is responsible
for assigning the probability of input x belonging to class i.
The Classification layer picks the highest probability as the
final output and attaches the class name to it. In the pre-
trained implementation of AlexNet for Matlab these two
layers are named “Prob” and “Out” respectively.

IV. DATA AND TASK ABSTRACTIONS

A. Data: Domain-Specific
The data that we need to visualize in this project is a
Hierarchical Network, where each layer corresponds to a
specific operation performed on input images that is
supplied from the previous layer. There are 8 layer types in
our data. Every layer has a specific type, input size, an
output size; and depending on its type, anywhere from zero
to nine other quantitative and sequential attributes.

In addition, as described in the previous section,
Convolutional and Fully Connected layers contain learnable
parameters that are important for feature visualization.
These, quantitative and diverging parameters are real
numbers stored as weights in a network of nodes and edges.

In order to visualize the activation of the filters inside
Convolutional layers, we derive additional data from these
weights using two different techniques, both producing gray
scale images. The second method we use is Forward
Activation [9], which keeps the weights as diverging (with
both positive and negative values) when producing gray-
scale images. The second method that we use, is GBP [8],
which sets all the negative weights to 0 (converts our
weight attribute from diverging to sequential) when
producing gray-scale images.

B. Data: Domain-Independent
In domain-independent language, our data can be abstracted
as a Hierarchical Network of nodes and edges, where each
layer in the hierarchy of the network has:

• 1 categorical attribute
• 0 to 9 quantitative and sequential attributes
• 0 to thousands of quantitative and diverging

attributes
• Derived data: 0 to thousands of grey-scale images

C. Tasks: Domain-Specific
In order to obtain a list of domain tasks for this project, two
main steps were taken. First, we interviewed Dr. Ali
Bashashati, who agreed to meet with us on regular basis to
collaborate as the domain expert in this project. The
domain-specific tasks that we identified during our
interviews are as follows:

• Understand the high-level architecture of the
network. Specifically, understand the type and
order of different layers.

• Understand the activation of each filter inside
Convolutional layers.

• Understand the over-all performance of a
Convolutional layer based on the quality of the
activations of its filters.

In a second step, we compared above tasks with the ones
from a study by Liu that surveyed researchers and identified
the following requirements for a CNN specific visualization
tool [9]:

1. Providing an overview of the learned features of

filters in convolutional layers and neurons in fully
connected layers.

2. Interactively modifying the neuron/filter clustering
results.

3. Exploring multiple facets of neuron/filter.
4. Revealing how low-level features are aggregated

into high-level features.
5. Examining the debugging information.

Note that Lui’s requirements are obtained for a

visualization tool that visualizes the network during training
with access to all the inputs from the training set. This is
considerably different for this project, as this project is
aiming to visualize a pre-trained network’s response to a
given input.

Lui’s access to training information allows him to cluster
neurons/filters. Also, training information allows him to
encode debugging information in his visualization tool.
Hence, requirements 2 and 5 from his list are not applicable
for this project as this project’s goal is to visualize pre-
trained networks with no access to their training
information. Moreover, there is no method for visualizing
neurons in fully connected layers for a given input in a
meaningful way. This is due to the nature of fully
connected layers, in which spatial information of the input
images are lost. Therefore, in this project visualizing
convolutional layers remain as the only appropriate layers
to visualize for a given input.

Finally, after comparing the relevant requirements from
Lui’s paper and combining them with our domain tasks, we
added the following domain tasks to our list:

• Identify the effect of applying different inputs to

the system on the activation of the filters inside
Convolutional layers.

• Compare different techniques for visualizing the
activations of the filters inside Convolutional
layers to find the best technique for the specific
dataset under study.

D. Tasks: Domain-Independent
Following the 9-stage design study methodology
framework [16], we summarized our domain-specific tasks

5

into the following abstract tasks:

Explore → Summarize
� Overall Architecture of ConvNet
� Activations of the filters in each

Convolutional layer

Explore → Compare
� Different techniques for visualizing the activations

of the filters inside Convolutional layers

Locate → Identify
� Filters that have learned useful features
� Filters that are useless

V. SOLUTION
Our final solution was designed to achieve the tasks that
were described in the previous section. Our over-arching
goal is to help researchers tune the structure and parameters
of Convolutional Neural Networks to improve their
performance. At a lower level, our goal is to help
researchers understand the high-level structure and
activations of the filters inside Convolutional layers of the
Convolutional Neural Networks they are researching.

Consequently, we spent a lot of time on making sure that
our tool works with all Convolutional Neural Networks. In
addition, we provide our tool in a web-application, which
allows researchers to upload their own network structure
and filter activation to our server and immediately begin
using our tool on their own network and training data.

 To avoid visual clutter in our design, we do not visualize
the connections between layers, or the nodes and edges of
the network inside Convolutional and Fully Connected
layers. Discussion with our domain experts determined that
information about the connection between layers or inside
Convolutional and Fully Connected layers is not really
important in tuning network parameters to optimize over-all
performance. The following section will describe the
technique we use for visualizing the activations of the
filters inside Convolutional layers.

A. Visualizing Learnable Parameters
We have decided to include two techno feature
visualization methods. The most common way to do this is
by visualizing the activations of each filter in convolutional
layers. This method was our design choice as a naive way
of visualizing learned parameters in the network. This
choice was made for two main reasons. First, this method is
very intuitive to understand, and relative easy to produce. In
addition, it requires significantly less computation
compared to more sophisticated methods. For instance,
running this method for all of the convolutional layers in
AlexNet, on a 2.4 GHz Intel Core i5, takes only 28 seconds.

The other method we selected was GBP [8]. This method
belongs to the family Deconvolutional networks, which was
introduced for visualizing activations of filters in deeper
layers. Among this family, a few different methods have

been introduced in the past a few years. After reviewing
original Deconvnet [7], back propagation [12], and GBP,
We chose GBP as we observed this method to produce
slightly more clear results. Fig. 3 compares the result of our
comparison for the activation map of filter 20 in 5th
convolution layer of AlexNet. All three images were
retrieved from the same filter and all other variables
remained constant. As illustrated in this figure, GBP gives
the best result.

(a)

(b)

(c)

 Fig. 3. Illustration of our comparative analysis on the family of Deconvnet
visualization method: (a) Back Propogation; (b) Deconvnet; (c) Guided
Back Propagation

Our findings matched the claims for two different papers [9].
Also, computationally, all three methods are comparable. For us,
running this method for all of the convolutional layers in Alexnet,
on a 2.4 GHz Intel Core i5, takes only 920 seconds.

VI. INTERFACES
The visualization tool was carefully designed to meet all the
requirements of this project. This tool is deployed as
website application that users can start using after
uploading the necessary files mentioned above, or by using
our default files to launch a demo. The tool can be
accessed at http://35.163.48.45:9374/. Fig. 4 illustrates an
overview of our visualization tool for AlexNet and an input
image of a weasel, retrieved from Imagenet dataset [21].

Fig. 4. An overview of the visualization tool

The visualization tool is split into 3 main views. Initially,
the system was designed in a single view as opposed to
multiple views showing the top level of hierarchy where the
architecture was the only visible view. The system was
designed based on the details on demand idiom, where the
user could see the next level of hierarchy by clicking on the
desired layer from the architecture diagram. The problem
with the original design was its heavy reliance on user’s
cognitive abilities to remember the architecture, the selected
layer, and the rank of selected layer in the architecture. Also

for selecting another layer, the user had to go back to the
original view, and then select another layer to investigate.
This extra effort required for viewing another layer caused
the users to lose context in terms of where they are in the
overall network.

This design was then replaced with a multiple view
design, where each view is designed for a specific purpose.
The following section describes the three views that we
have in our final design.

1) Architecture Canvas

This canvas contains the general information about the
network. Fig. 5 illustrates this canvas in detail for AlexNet.
On the very top the name and the number of layers are
encoded as text fields. Underneath, the overview of the
architecture of the network is displayed. The architecture is
encoded as a chain of node-link diagram. Each node
represents a layer. The type of the layer is encoded inside
each node as plain text. The link between layer A and B is
encoded as a directional line mark. This encodes the output
of layer A is fed to layer B. The number of outputs is
encoded as numerical text values above each link.

Fig. 5. Illustration of the Architecture Canvas

Also, as mentioned earlier in the report, one design
choice for this canvas that we made was about whether to
aggregate any of the layers in one node. Some of the
existing CNN visualization tools aggregate some of the
layers between two convolutional layers. We believe that
this might be misleading to a novice user. For instance,
aggregating convolutional and ReLU layers in one node
might lead to a user thinking that ReLU is not a distinct
layer.

The last encoding for this canvas lies inside the nodes
representing convolutional layers. These nodes contain a
stacked bar summarizing the result of the annotation. This
bar is placed at bottom of these nodes. Annotation is one of
the features described in the interaction section. The
stacked rectangles in the stacked bar are color coded in
three different colors. Blue section indicates Good, red
indicates Bad, and gray is used for filters that do not have
any annotations.

2) Details Canvas

This canvas contains the detail on demand for selected
layers in the Architecture Canvas. The selected layer
determines the details displayed in this canvas. Therefore,

the encoding differs based on the layer type.
Fig. 6 illustrates the Details canvas for the second

convolutional layer of AlexNet. In this view, switching
between two different activation visualization methods and
the parameters is possible by selecting the corresponding
radio button. The activations are visualized as a grid of
images.

Fig. 6. Illustration of Details Canvas for a Convolutional Layer

For probability layer, the classification results are
visualized in a sorted bar chart. The bar chart filters the
values shown to only the ones that are larger than a fixed
threshold. The threshold is set to be 0.1. In the bar chart, the
y-axis encodes the probability in percentage from 0 - 100.
The x-axis illustrates the classes that achieved a score larger
than the fixed threshold of 0.1. Fig. 7 illustrates the Details
canvas for the “Prob” layer of AlexNet for the input image
illustrated in Fig. 6. In this case “weasel” has the highest
probability and is located on the left hand side of the x-axis.

Fig. 7. The Details Canvas for a Probability layer

For output layer, we show the confidence level of the
network in classifying the input as one of the classes in a
bar chart. Additionally, the top image on Flickr with the tag
matching the name of the output class is shown. We believe
this would be useful as the user might not be familiar with
the name of the output class. For instance, if the network
takes an image of a German shepherd and misclassifies the

7

input image of to be an image of Bedlington terrier, this
feature will help the user to compare the similarities
between the two breeds. Fig. 8 illustrates the Details canvas
for the output layer of AlexNet. This figure shows the result
for an input image of a weasel.

Fig. 8. Illustration of the Details Canvas for the Output Layer

The pooling layer parameters are encoded to visually
represent the window size of the parameters. All the
parameters in this layer could be encoded as a grid of
squares. We believe showing a 3x3 grid of 9 squares is
easier to grasp for the user rather than just showing the
numerical values of this layer as plain text. Finally, all the
other layers contain a set of parameters and they are
encoded as plain text.

3) Side Canvas

This canvas contains the input image on the very top. The
space below this image is reserved for labels and activation
images to be played when the user interacts with the
system. This canvas is designed to be on the right side of
the screen at all times. It illustrates the selected layer and
the selected texts. It is also locked to the same fixed
location even during scrolling. We believe this is necessary
because when the user is scrolling through the Details
canvas, the user needs to see the input image for
comparison. Allowing this canvas to scroll will push the
input image off the screen if the user scrolls down. Fig. 9
illustrates an example of the Side canvas for an input. This
screen shot was taken while the user was hovering over the
activation of filter 20th of the 5th convolutional layer in
AlexNet. This will become clearer when we discuss in the
next section where we discuss the possible user interactions
in our system.

Fig. 9. Illustration of the Side Canvas

B. User Interactions
In this section, the possible interactions of the user with our
system are described. There are some obvious interactions
such as highlight on hover for layers, or select and change
border on click for all the nodes representing the layers in
the main canvas. Also, upon clicking each layer, the name
of the selected layer is added to the side canvas underneath
the input image. However, we believe there are some other
annotations that need to be explained further. The following
sections categorize and describe the ways users can interact
with our system in detail.

1) Annotation
In Convolutional layers, we visualize the activations of
each filter for the input. These activations might indicate
that a filter is not extracting beneficial features, or possibly
extracts no features at all. Also, keep in mind that the user
has the freedom in choosing the number of filters for a
given convolutional layer. Since our tool could be used for
improving the performance, a user might want to annotate
the filters as useful/good, useless/bad, or leave them un-
annotated. For this reason, we have included this feature in
our design. Fig. 10 illustrates an example of this feature in
action. In this case the user has already annotated 42 filters.

Fig. 10. Illustration of the Annotation Feature

The user can annotate a filter to be good by a single left
click, bad by double click, and undo the annotation by
holding the shift key before a single left click. The
summary of these annotations is contained inside the
corresponding node representing the layer.

2) 6.3.2 Details on Hover
This feature allows the user to get extra detail about a
specific visible element on mouse over. We have added
tooltips for this purpose for the stacked bars summarizing

the annotations in convolutional layers and for the bar chart
representing the probabilities in the Prob layer.

3) 6.3.3 Zoom on Hover
This feature is available for all of the filters inside
convolutional layers. The user can hover over an image
representing the activation of a filter and see the large
version of the image displayed on the right hand side, inside
the Side canvas, juxtaposed under the input image for
comparison. This allows easy comparison to the input
image. Additionally, the label representing the
identification number of the filter of interest is indicated
above the enlarged version of the image. In Fig. 6, an
illustration of this interaction is shown.

VII. IMPLEMENTATION
This project is Mahdi’s MEng main project. Therefore, he
was in control of this project and prepared all the data
required for the visualization tool. That includes selecting
the method for deriving the data and comparing and
contrasting the available methods for visualizing
activations.
That being said, both authors contributed equally in coding
the visualization tool.
This section is divided into two portions. The first one
(Data Generation) describes the tools we are providing our
users for modifying their CNNs to make them usable in our
system. The second section (Data Visualization Tool)
describes the actual implementation of our tool (ConvLens).

A. Data Generation
In order to meet the requirements of this project, our
visualization tool needs to be dynamic. This implies that
our tool should be able to visualize any CNN that is fed into
it. Therefore, careful considerations were taken into account
for portability and generalizability of the data generation
phase. We will explain this in more detail in the next
section (Data Visualization Tool).

Four data files are required to take advantage of the full
capability of our visualization tool: a JSON file containing
Architecture Information, a folder containing images of
feed forward activations, a folder containing images of back
propagation, and finally a JSON file of the output of the
network for a given input.

It is worth mentioning that in order for our tool to
visualize the overall architecture and the numerical
parameters of the network only the first file is required.
However, for our tool to visualize the response of the
network to a given input at least one of the other three files
is required. In the following section our method for
producing the data and what they are is described in detail.

1) Architecture Information
This file contains general information about the architecture
of the visualized CNN. It needs to be saved in JSON text
format and with the specific structure that is compatible
with the visualization tool. For ease of use we have
provided a sample version of this file. The user may modify

the sample and manually or produce the file automatically.
For this project, we have automated this process using

Matlab and JavaScript. In order to achieve this we had to
modify the Matlab’s deep learning library’s source code.
we have made the script available in this project’s package.
Instructions for how to produce this data are included in the
software manual.

2) Forward Activations
As mentioned earlier, this method is a naive way of
visualizing the result of applying each filter on the input in
convolutional layers. For this project, we wanted to
visualize this effect for every filter in every convolutional
layer in the network. Fortunately, recent release of Matlab’s
deep learning library includes an “activation” function that
returns the numerical values of any filter in any layer; after
it is applied to the input. By manipulating this function, we
can produce images that resemble the effect of each filter
on the input.

These images are produce by following the steps
mentioned below:

1. Obtain the values of applying the activation function

for filter 1 in convolutional layer.
2. Normalize the result of 1, between [0,255] to produce a

gray scale image. (This is needed because the filter
weights are diverging values from (-∞ , +∞) and
multiplying these values by the input (which is an
image) values scales the diverging values of the filter.
Therefore, we need to normalize the smallest value to
be 0 and the largest value be 255 to produce a
meaningful gray scale image. In Matlab, mat2grey
function takes care of this normalization operation.)

3. Save image to file with the name of
“LayerNameFilterNumber.format”.

4. Repeat step 1 to 3 until we reach the last filter in the
last convolutional layer.

We have written a script in Matlab that follows the above
algorithm and produces all the images automatically. The
script is included in the project package and the manual
describes how to use the script.

3) Guided Back Propagation
Guided Back Propagation is the more sophisticated method
of visualizing the result of applying each filter on the input
in convolutional layers. Unfortunately, there are no native
Matlab functions to support some of the required operations
for this method. However, MatConvNet, a third party
library for Matlab, released by Andrea Vedaldi from
University of Oxford [22], makes this process easier to
implement. Felix Grün has released an open source library,
FeatVis that builds on top of MatConvNet. FeatVis
supports Guided Back Propagation.

It is necessary to note that CNNs are defined in a
different manner in MatConvNet compared to Matlab’s
native deep learning library. The user needs to convert the
format of the CNN to the format compatible for
MatConvNet following the guidelines and manuals

9

provided for this library.
For the purpose of this project, we used FeatVis to

produce the images for Guided Back Propagation to
visualize the features from the input image that activated a
particular filter the most. We have a written a separate
scripts to automatically produce all of the images for all the
filters in the network. This script takes care of converting
the input image to the correct format for FeatVis and
MatConvNet. We have also modified the source code of
FeatVis to make this process automated and faster. The
instructions for using the script are included in the manual
for this project.

4) Output of Class Scores

This file is a simple JSON text file that contains an array
“S” of scores. Each element “si” in the array with index
“we” contains the scores of the input being classified to
belong to class “ci”. The length of the array is equal to the
number of possible classes of output.

This file is simply achieved by using Matlab’s native deep
learning library. This is done by using the built in function
of “classify” and saving the result as a JSON text file. A
sample of this file has been provided in the package.

B. Data Visualization Tool
Our tool (ConvLens) is designed as a web application,
implemented using HTML, CSS, D3.js, and jQuery. Our
design contains the following main views.

1) Architecture Canvas

This canvas was a designed using D3.js and raw JavaScript.
All the code for this canvas is written from scratch. No
other external libraries or code from other sources were
used to implement this canvas

The width of this canvas remains constant but the height
of the canvas is adjusted dynamically, depending on the
number of layers in the architecture.

In the implementation, we found seven layers per row,
and square side of length 60px to be reasonable values to
choose. These values were chosen based on trial and error.

The stacked bars are contained within each node
representing the layers. The stack bars are placed at bottom
one third of the area of each convolutional layer. The stack
bars become visible after the user starts annotating a layer.
No external library or code from other sources was used to
implement this canvas

2) Details Canvas

This canvas displays the detail on demand based on the
user’s interaction with the tool. The selected layer
determines the details displayed in this canvas. Therefore,
the implementation of this canvas is different based on the
type of the selected layer. Aside from ReLU,
Normalization, Drop Out, and Fully Connected layers,
where simple text is displayed, visualizing other layers
required more development effort. In the following section
we discuss the implementation details for each of our layer
types.

a) Convolutional Layer Details
This layer reveals the effect of applying filters on the input.
In addition, numerical values of all the parameters of these
layers are displayed for this layer type. On top of the
canvas, the radio buttons are implemented in HTML.

A grid of SVG images using D3 was implemented to
show the images of post-filtered input. The height of canvas
is adjusted based on the number of filters in each layer. The
elements within the grid have constant width and height.
The size of widths and heights are determined based on trial
and error. The parameters are displayed as plain text in
HTML.

b) Pooling Layer Details
The encoding in this layer was coded in D3 and draws basic
grids to show window size of all three parameters of this
layer.

c) Probability Layer Details
The sorted bar chart for this layer was implemented by
modifying the given example by the author of D3.js [23]. A
threshold of 0.1 was set to filter the shown data points in
this chart.

d) Output Layer Details
This layer displays a bar chart of the confidence in
classifying the output. This bar chart is coded in D3. Below
the bar chart, the image is an SVG image that is queried
from Flickr by modifying a code from Stack Overflow [24]

3) Side Canvas

This canvas is another SVG canvas that illustrates the input
image. The canvas and all the details illustrated in it are all
coded using D3.

VIII. RESULTS
In this section, we discuss two scenarios that aim to
demonstrate how our tool can be used to complete the
domain tasks discussed earlier in this report.

A. Exploring the input to the network and the effect
of applying convolution throughout the system
Donald, a hobbyist, takes a picture from himself and
wonders what if a well-known CNN, called AlexNet could
classify him as a person. He, then, uses Matlab to feed
AlexNet his picture. Surprisingly, AlexNet, classifies him
as a neck brace. Donald knows that deep layers in the
network extract high level features. He then wonders if he
could explore every filter in the last convolutional layer to
see what features from his picture excited the filters in that
layer the most.

Donald runs our data generation Matlab script and feeds
the results into ConvLens. He then looks for the last
convolutional layer in AlexNet. By looking at the overview

of AlexNet’s architecture visualized in ConvLens, Donald,
quickly spots that “conv5” is the last convolutional layer in
the network. He also observes from the shown architecture
that this layer has an output value of 256. Donald knows
that the number of filters in Convolutional layers is equal to
the number of outputs; therefore, he expects to investigate
256 images in this layer. He then selects this layer. Fig. 5,
illustrates this architecture.

The Details canvas loads all the 256 images produced
using GBP method. From the overview, he spots that most
of the images emphasize the bottom of the image. He picks
a few of the images to investigate further. He first hovers on
the output of filter 256. By musing over the desired filter, a
larger version of the image is displayed under the input
image, which allows Donald to compare the result of filter
10 to the original image. This process for a different input is
shown in Fig 6. Finally, repeating this process for all the
filters, allows Donald to confirm that about one third of the
filters are extracting his neck area, which explains why his
AlexNet classified him as a neck brace.

B. Optimizing the Number of Filters

Yann, a biomedical engineering student, recently has
learned about CNNs in his CPSC540 course. He
implements a CNN that takes an image and classifies it is
an image of a dog or a cat. In his implementation, Yann
chooses to include 3 convolutional layers in his
architecture. For the number of filters in each convolutional
layer, he decides to include an arbitrary number of 256. He
chooses this value by comparing his network to AlexNet.
Unfortunately, Yann’s initial attempts at classifying
common objects result in poor classification accuracy. He
then wishes to gain a better understanding of how these
filters respond to his set of test images. Yann, knew his
classmates in CPSC547 have created ConvLens, a tool that
could help him with this task. Therefore, he decides to give
ConvLens a try.

He sets up ConvLens to understand how the filters in the
convolutional layers respond to a few test images. For a test
image, Yann investigates the 3 convolutional layers in his
network. He uses the annotation feature of ConvLens to
annotate each filter as either useful or useless by visually
examining the activations of each filter for the input. He
marks the filters that produce noisy images, or pure black,
as useless, by double-clicking on each image; and marks the
rest as useful by a single click on the image.

Following this step, Yann records the overview of his
annotation results by taking a look at the stacked bar charts
contained inside the nodes that represent convolutional
layers. Fig 10 illustrates the same task for a different CNN
and different input. We have not implemented the
functionality to export the annotations yet; so, currently
Yann has to record the stack chart results himself.
Subsequently, He re-runs this experiment for a few other
test images and concludes that for all the test images, the
3rd convolutional layer contains over 80 useless filters.
Yann then reduces the number of filters and in this layer by

one third and verifies that this process has improved the
classification accuracy of the network.

IX. DISCUSSION AND FUTURE WORK
Even though we did not perform a formal user evaluation of
our tool in time for this report, we did perform an informal
evaluation by showing our tool to our domain experts and
several none-expert individuals. Based on our observations
during these demos, we believe that our solution helps users
achieve the domain tasks described in this paper.
Furthermore, after every single demo, participants showed
interest in exploring our tool further and possibly using it in
their own research. In several instances, we were asked
whether ConvLens is open sourced, where the Github
repository is, and whether we are going to keep hosting it at
the current address or possibly on a new domain
comparison.

In with the most common tools that are currently
available for visualizing CNNs, ConvLens has three major
strengths: it provides an architectural overview of the
network without any visual clutter; it provides multiple
methods for visualizing the learned parameters inside
Convolutional layers; and, most importantly, it can be
easily used with any CNN and any training/ test data.

We have decided to allow our users to upload the
structural information of their CNNs to our server and we
make them available to the public because these files are
relatively small in size; pose less privacy concerns
compared to the images visualizing the learnable
parameters; and, most importantly, can be of great value to
other researchers or hobbyists.

On the other hand, uploading the images that visualize
the learnable parameters inside CNNs onto a server might
be difficult due the sheer number of these images (even
though their file sizes are usually small) and privacy
concerns. Consequently, our tool only requires a link to the
directory that contains these images on user’s private
computer (as a local host) or any other servers. Finally, it is
important to point out that the implementation of our tool
(ConvLens) allows it to visualize the learnable parameters
using any technique that produces an image. In other words,
nothing in our implementation limits the user to use only
Forward Activation or GBP for creating images that
visualize the filters inside Convolutional layers.

In terms of future works, we are hoping to have a more
dynamic front-end in terms of screen aspect ratios.
Currently, the user needs to adjust the zoom of the browser
to be at 75% for the tool to fit entirely on the screen. Also,
the overall appearance of the tool and the layout requires a
fair amount of polishing.

On the backend side, we are working on providing the
users with the functionality to export their annotations, and
possibly perform quick statistical analysis on them.

On the visualizing side, it will be extremely useful to
rank the filters (inside convolutional layers) for each input
image based on the relative importance of the filter. There
could be several measures to determine the importance of a
filter, but, so far, we are planning to use the average weight
of the activation map for each filter. Moreover, while we

11

couldn’t find any appropriate methods for visualizing the
Fully Connected layers for a given input, further
investigation into this matter is could be fruitful. Finally,
we are planning to integrate our Matlab and Java
visualization scripts that are used for data generation into
our tool, which would further streamline the process for
researchers to use our tool with their own network and data.

X. CONCLUSION
In this project, we designed and implemented an

interactive tool that is capable of visualizing any
convolutional neural networks, with any training/ test sets,
and multiple methods for visualizing the learnable
parameters. Our tool (ConvLens) is currently served on the
web as a fully functional application. The main
contributions of this project are divided into two categories
of data visualization and data generation.

For the data generation phase, we have reviewed the state
of the art method of visualizing the learnable parameters
within convolutional layers of CNNs. We have selected two
different methods and provided the software to replicate
these two methods on other CNNs and datasets. In addition,
we have provided the software to export CNNs architecture
into a compatible JSON text file for our visualization tool.

For the data visualization phase, we created a standalone
tool that could work with the data produced in any
software. Our tool (ConvLens) visualizes an overview of
the architecture, the activation map of convolutional filters
for an input using multiple methods, the tunable parameters
of all the layers, and the classification results of the network
for the input image. Additionally, our tool allows the user to
annotate the filters in convolutional layers to keep track of
the layers that require fine-tuning of the number of filters.

REFERENCES
[1] S. Min, B. Lee and S. Yoon, "Deep learning in bioinformatics",

Briefings in Bioinformatics, p. bbw068, 2016.
[2] H. R. Roth et al., “DeepOrgan: Multi-level Deep Convolutional

Networks for Automated Pancreas Segmentation,” in Medical Image
Computing and Computer-Assisted Intervention -- MICCAI 2015,
2015, pp. 556–564.

[3] J.	Lanchantin,	R.	Singh,	B.	Wang,	and	Y.	Qi,	“Deep	Motif	
Dashboard:	Visualizing	and	Understanding	Genomic	Sequences	
Using	Deep	Neural	Networks,”	Pac	Symp	Biocomput,	vol.	22,	pp.	
254–265,	2016.	

[4] P. Bashivan, WE. Rish, M. Yeasin, and N. Codella, “Learning
Representations from EEG with Deep Recurrent-Convolutional
Neural Networks,” arXiv:1511.06448 [cs], Nov. 2015.

[5] A. Krizhevsky, WE. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
Advances in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 1097–1105.

[6] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding Neural Networks Through Deep Visualization,”
ArXiv e-prints, vol. 1506, p. arXiv:1506.06579, Jun. 2015.

[7] M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks,” arXiv:1311.2901 [cs], Nov. 2013.

[8] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for Simplicity: The All Convolutional Net,” presented at
the ICLR (workshop track), 2015.

[9] F. Grün, C. Rupprecht, N. Navab, and T. Federico, “A Taxonomy
and Library for Visualizing Learned Features in Convolutional

Neural Networks,” presented at the International Conference on
Machine Learning, New York, NY, USA, 2016, vol. 48.

[10] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing
Higher-Layer Features of a Deep Network,” Universite de Montreal,
Dept. IRO, Technical Report 1341, 06 2009.

[11] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Object Detectors Emerge in Deep Scene CNNs,” ArXiv e-prints,
vol. 1412, p. arXiv:1412.6856, Dec. 2014.

[12] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside
Convolutional Networks: Visualising Image Classification Models
and Saliency Maps,” ArXiv e-prints, vol. 1312, p. arXiv:1312.6034,
Dec. 2013.

[13] J. L. Long, N. Zhang, and T. Darrell, “Do Convnets Learn
Correspondence?,” in Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1601–
1609.

[14] “TensorBoard: Visualizing Learning,” TensorFlow. [Online].
Available:
https://www.tensorflow.org/get_started/summaries_and_tensorboard.
[Accessed: 28-Apr-2017].

[15] S. Chung, S. Suh, C. Park, K. Kang, J. Choo, and B. C. Kwon,
“ReVACNN: Real-Time Visual Analytics f or Convolutional Neural
Network,” presented at the Workshop on Interactive Data
Exploration and Analytics, San Francisco, CA, USA., 2016.

[16] A. W. Harley, “An Interactive Node-Link Visualization of
Convolutional Neural Networks,” in Advances in Visual Computing,
2015, pp. 867–877. Springer International Publishing.

[17] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards Better
Analysis of Deep Convolutional Neural Networks,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no.
1, pp. 91–100, Jan. 2017.

[18] A. Karpathy and J. Johnson, “CS231n Convolutional Neural
Networks for Visual Recognition.” [Online]. Available:
http://cs231n.github.io/convolutional-networks/. [Accessed: 28-Apr-
2017].

[19] A. Ng, “Deep Learning Tutorial, Computer Science Department,
Stanford University.” [Online]. Available: http://ufldl.stanford.edu/.
[Accessed: 28-Apr-2017].

[20] M. Sedlmair, M. Meyer, and T. Munzner, “Design Study
Methodology: Reflections from the Trenches and the Stacks,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no.
12, pp. 2431–2440, Dec. 2012.

[21] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition,
2009, pp. 248–255.

[22] A. Vedaldi and K. Lenc, “MatConvNet - Convolutional Neural
Networks for MATLAB,” ArXiv e-prints, vol. 1412, p.
arXiv:1412.4564, Dec. 2014.

[23] M. Bostock, V. Ogievetsky, and J. Heer, “D3; Data-Driven
Documents,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 12, pp. 2301–2309, Dec. 2011.

[24] “Stack Overflow, JavaScript - Random photos from Flickr JSON
feed - Stack Overflow.” [Online]. Available:
http://stackoverflow.com/questions/16566260/random-photos-from-
flickr-json-feed. [Accessed: 28-Apr-2017].

