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Abstract Convolutional Neural Networks (CNNs) are one of the most popular approaches for object recognition problems. 
Despite their increasing popularity, they are widely known as black boxes. This is mainly due to their complex architecture and 
the high number of none-linear parameters within a CNN. Recently, a lot of attention has been given to exposing these black 
boxes by visualizing their learnable parameters. This project proposes a solution that interactively visualizes the architecture of 
the network and allows the user to investigate the parameters of the network layer by layer. The convolutional layers of the 
network, which contain learnable parameters, are the main focus of this tool. We visualize these learnable parameters by taking 
advantage of multiple recently published methods. Along with the visualization tool, this project provides software to 
automatically replicate some of the existing methods for visualizing the learnable parameters and outputs the results in a 
compatible format for ease of use in our visualization tool. Our tool is, currently, available for use at 
http://35.163.48.45:9374/. 
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I. INTRODUCTION 
Recently, Deep Neural Networks (DNNs) have gained 
much attention due to their success in tasks such as image 
classification and speech recognition. Among different 
DNN approaches, Convolutional Neural Networks (CNNs) 
are extremely popular, in particular, due to their outstanding 
capacity to utilize spatial information. Currently, there has 
been a shift in applying bioinformatics data to CNNs [1]. 
While much success has been achieved in the biomedical-
imaging domain [2] using CNNs, there is ongoing research 
in other bioinformatics domains such as genomic sequence, 
[3] motifs, and EEG [4] as well.  

Despite the encouraging success of CNNs, many still see 
CNNs as promising black boxes with little insight into the 
behaviour of their internal components. This fact leaves 
many researchers relying on trial and error to achieve better 
performance and fine-tune the parameters involved. Large 
modern neural networks are even harder to study because of 
their size. For example, understanding the widely used 
AlexNet DNN [5] involves making sense of the values 
taken by the 60 million trained network parameters [6, 7]. 

Consequently, the goal of this project is to create a 
visualization tool that allows domain experts to gain a 
better understanding of the inner components of any given 
CNN for their given input.  

In order to achieve this goal, one naive approach is to 
feed forward the input up to the desired component inside a 
CNN, and then visualize what that component is outputting. 
Thankfully, since the input of a CNN is an image, for the 
components of the network that keeps the spatial 
information of the input, it is possible to produce an output 
that is understandable by humans. This output is taken and 

converted to a gray scale image. Then we can gain some 
insight by a simple side-by-side comparison to the original 
input.  

However, as described by Mathew Zeiler and Rob Fergus 
[7], this naive approach fails to produce easy to understand 
images for the learnable parameters located deep inside the 
network. Therefore, they propose a more sophisticated 
approach, in which visualizing these parameters is possible. 
This is done by building a Deconvolutional network, which 
takes the raw result of the naive approach (described above) 
and projects the result of each component back to the input 
pixel space. In this project, an improved version of 
Deconvnet called Guided Back Propagation (GBP) [8] is 
used as well as the naive approach to visualize the learnable 
parameters contained in CNNs. 

Consequently, we make the following contributions in 
this project: 

1. Provide a clutter-free visualization of the over-all 
structure of the CNN, which allows users to 
interactively investigate different inner 
components of the network for a given input. 

2. Allow for side-by-side comparison of multiple 
techniques for visualizing the learnable 
parameters inside CNNs. 

3. Provide a set of data generation script, which can 
convert any CNN structure to the format that is 
consumable by our tool. 

4. Provide a web-application deployment so that 
researchers can easily use our tool with their 
own CNNs and training/testing datasets. 

The rest of this report is broken up into the following 
sections: Related Works, Domain Background, Data and 
Task Abstractions, Solution, Interfaces, Implementation, 
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Results, Discussion and Future Works, Conclusions, and 
Bibliography. 

II. RELATED WORK 
Visualizing learnable parameters is the most common 
approach to better understanding CNNs [9]. In an initial 
effort, Erhan and Bengio [10] found that visualizing learned 
features based on the concept of activation maximization 
could be an effective approach. This concept is based on 
looking for an input image from a large data set of images 
or a patch from one input image that maximizes the 
activation of a given neuron in a layer.  This idea is further 
advanced by multiple research groups leading to three 
branches: Input Modification, Deconvolution, and Input 
Reconstruction methods [9].  

Input modification methods are based on modifying the 
input image and monitoring the changes in the activation of 
a given neuron. Changes in the value of activation help 
identify parts of the image that are the most important for a 
given neuron [10, 11]. Zeiler and Fergus [7] achieved this 
by creating a gray square to occlude one part of the image 
at a time. By sliding this occlusion square they obtain a 
heat-map that is identical in size to the input pixel space 
that encodes the values of activations of a given neuron.   

Input reconstruction methods break down the image into 
smaller patches and reconstruct it by either re-ordering the 
patches or replacing the patches of the original image with 
other images [12, 13]. The goal of these methods is to 
create new images that maximize the activation of a given 
neuron. Observing reconstructed images helps users gain 
better insight about learned features by a neuron. These 
methods have recently gained much attention by several 
research groups that propose modification to the original 
approach with the goal of keeping reconstructed images 
human interpretable [6].  

Deconvolutional networks (described in Introduction), 
also widely known as Transposed Convolutional networks, 
refer to a multi-layered Deconvolutional network to project 
the feature activations back onto the input pixel space for a 
trained network. This technique reveals the input stimuli 
that excite individual feature maps at any layer in the model 
[14]. This method has been further improved to 
accommodate more models and produce easily interpreted 
images. GBP is a state of the art methodology within the 
family of Deconvnets [8]. We implement this method in our 
tool. 

Up to this point, we have discussed the state of the art 
methods of visualizing learnable parameters within 
convolutional layers of CNNs. While feature visualization 
remains the most common approach in visualizing CNNs, 
less attention has been given to visualizing the overall 
structure of CNNs and the relationship between neurons 
within the network. Google’s Tensorflow (an open source 
software library for machine learning) is complemented by 
a visualization tool, called Tensorboard, which visualizes 
the overall structure and relationships within the network 
[14].   

CNNVis [15], ReVACNN [16], and a 3D tool proposed 
by Harley [17] are some other visualization tools that are 

capable of visualizing the structure of the networks, the 
relationship between the neurons, and the learnable 
parameters in each layer. Despite the valuable insights that 
these tools provide, each of them suffer from at least one 
major weakness that discourages users from taking 
advantage of their strengths. It is also worth mentioning that 
none of these tools are capable of including more than one 
of the methods discussed in this section for visualizing 
learnable parameters. 

A major weakness of both Tensorflow and ReVACNN is 
the presence of visual clutter due to the use of node-link 
diagrams to show relationships between all of the neurons. 
CNNVis is not scalable for large networks since the images 
produced for visualizing learnable parameters are too small 
to view. Finally, Harley’s tool is a 3D visualization of the 
network. This tool suffers from occlusion due to the nature 
of 3D visualizations. Rotating the view (to see the structure 
from different angles) results in occlusion of inner layers by 
outer layers. Furthermore, interacting with the 3D objects, 
in a lot of cases, leads to the user losing context of where 
they are within the overall structure of the network. 

Since one of the goals of this project (as described in our 
Data and Task Abstraction section) is to visualize how the 
CNN reacts to a given input, Deconvolutional method is the 
only technique that satisfies our requirements. In this 
project, after careful review of these methods and existing 
tools, we decided to use GBP and Filter Map activations. 
The rationale behind these choices is explained in more 
details in the Solution section of this report. 
 

III. DOMAIN BACKGROUND 
This section aims to deliver a brief summary of the 
architecture of CNNs and the types of data that CNNs 
contain. The contents described in this section are the 
summary of an online course offered by Stanford 
University, CS231n: Convolutional Neural Networks for 
Visual Recognition [18]. 

There are several main operations that take place within a 
CNN, all in a specific order. In a modular design of CNNs, 
each of these operations lies within a module, which is 
referred to as a layer. However, in the literature, there is an 
inconsistency in the grouping of different operations into 
layers. Some publications combine several operations in a 
single layer, while others dedicate a distinct layer to each 
operation. In the context of this project, in order to avoid 
any confusion, we will dedicate a distinct layer for each 
operation. 

Each layer has a set of parameters. Some of the layers 
have fixed parameters while others have learnable ones. 
The following section briefly describes the common layers 
in CNNs. 

 

A. Convolutional 
This layer is responsible for convolutional operations, 
which are performed using grid-like windows of weights 
that slide across the input image. This window is commonly 
referred to as a convolutional filter. The filter slides across 
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the image with a predefined step size. This step size is 
referred to as stride. The output of this operation is the 
result of the dot product between the entries of the filter and 
the pixel values of the input image.  The result of this 
operation is called the feature map or activations of a 
filter. 

CNN designers have the freedom to choose the number of 
filters in each layer, the window size, the stride, and the 
padding size, which as the name suggests refers to the 
operation of adding zero padding around the input image. 
Fig. 1 [19] illustrates the operation of convolution on an 
input image of size 5x5, by a filter of size of 3x3, stride size 
of 1 and padding size of 0. The green area illustrates the 
image. The yellow area is the filter window containing the 
small red values indicating the filter weights. Finally, the 
pink window, labeled as “convolved feature”, is the result 
of the convolution, which is basically the feature map or 
activation of the filter. It is, also, worth noting that all the 
weights in each filter are learned during the training 
process. 

 
Fig. 1. Illustration of convolution1 

 
 

B. Non Linearity 
This layer is also commonly referred to as the activation 
function. The most popular activation function used for 
CNNs is the rectified linear unit (ReLU); an element-wise 
activation function that sets the negative values to 0 and 
retains the positive values. 

                                        (1) 
 
This layer comes after the convolutional layer and is 
applied to every element/weight in each window. There is 
no learnable parameter in this layer. 
 

C. Pooling 
Pooling layer reduces the dimension of the input. The most 
popular pooling is maximum pooling. In this operation a 
fixed window size is defined, and then an empty window of 
this size is slid over the input to cover the entire pixel 
space. For each stride in this process, the maximum value 
within the window is extracted. Fig. 2 illustrates the process 
of max pooling for an input of window size 4x4, pooling 

 
1 Retrieved from Deep Learning Tutorial available at 

http://ufldl.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif. 

window of 2x2, and stride of 2. The colour-coding of red, 
green, yellow, and blue indicate when the pooling window 
is placed on top of the input. For each coloured window, the 
maximum value is picked. The result of this operation down 
samples the original input from window size of 4x4 down 
to window size of 2x2. Finally, the CNN designer chooses 
the pooling window size, and the stride. There are no 
learnable parameters in this layer. 

 
Fig. 2.  Illustration of Max Pooling2 

 

D. Fully Connected 
This layer acts just like traditional neural networks. Within 
each layer, there exists a set of blocks. These blocks are 
commonly referred to as neurons. Each neuron contains a 
vector of size equal to the number of inputs. The output of 
each neuron is the sum of dot product between the input 
values and the entries of the vector. The CNN designer 
chooses the number of neurons in each fully connected 
layer. In addition, all the weights in each neuron are 
learnable. 
 

E. Normalization 
This layer, as the name suggests, normalizes the input. This 
operation happens for a given window size. The designer 
can choose to have the operation happen in one selected 
window or across multiple windows. In this operation all 
the elements in a given window are replaced with a 
normalized value, obtained using the elements in the 
normalization window. 

 

F. Dropout 
This is a very simple but effective layer in the architecture. 
The role of this layer is to avoid memorizing (also known 
as over fitting) the examples during the training process. 
This layer only takes a probability value. According to the 
probability value, it sets the value of the inputs to zero. The 
CNN designer sets this value.  

 

G. Softmax and Classification 
Softmax and Classification layers are usually the last two 
layers in the architecture.  These two layers work together 

 
2 This image was retrieved from an online course, Convolutional 

Neural Networks, Stanford University. Retrieved From 
http://cs231n.github.io/convolutional-networks/ 



to produce the final output for a network that approximates 
a classification problem. The Softmax layer is responsible 
for assigning the probability of input x belonging to class i. 
The Classification layer picks the highest probability as the 
final output and attaches the class name to it. In the pre-
trained implementation of AlexNet for Matlab these two 
layers are named “Prob” and “Out” respectively.  

 

IV.  DATA AND TASK ABSTRACTIONS 

A. Data: Domain-Specific 
The data that we need to visualize in this project is a 
Hierarchical Network, where each layer corresponds to a 
specific operation performed on input images that is 
supplied from the previous layer. There are 8 layer types in 
our data.  Every layer has a specific type, input size, an 
output size; and depending on its type, anywhere from zero 
to nine other quantitative and sequential attributes. 
 
In addition, as described in the previous section, 
Convolutional and Fully Connected layers contain learnable 
parameters that are important for feature visualization. 
These, quantitative and diverging parameters are real 
numbers stored as weights in a network of nodes and edges.  
 
In order to visualize the activation of the filters inside 
Convolutional layers, we derive additional data from these 
weights using two different techniques, both producing gray 
scale images. The second method we use is Forward 
Activation [9], which keeps the weights as diverging (with 
both positive and negative values) when producing gray-
scale images. The second method that we use, is GBP [8], 
which sets all the negative weights to 0 (converts our 
weight attribute from diverging to sequential) when 
producing gray-scale images.   
 

B. Data: Domain-Independent 
In domain-independent language, our data can be abstracted 
as a Hierarchical Network of nodes and edges, where each 
layer in the hierarchy of the network has: 

• 1 categorical attribute 
• 0 to 9 quantitative and sequential attributes 
• 0 to thousands of quantitative and diverging 

attributes 
• Derived data: 0 to thousands of  grey-scale images  

 
 
 

C. Tasks: Domain-Specific 
In order to obtain a list of domain tasks for this project, two 
main steps were taken. First, we interviewed Dr. Ali 
Bashashati, who agreed to meet with us on regular basis to 
collaborate as the domain expert in this project. The 
domain-specific tasks that we identified during our 
interviews are as follows: 

 

• Understand the high-level architecture of the 
network. Specifically, understand the type and 
order of different layers.     

• Understand the activation of each filter inside 
Convolutional layers. 

• Understand the over-all performance of a 
Convolutional layer based on the quality of the 
activations of its filters.  
 

In a second step, we compared above tasks with the ones 
from a study by Liu that surveyed researchers and identified 
the following requirements for a CNN specific visualization 
tool [9]:  

 
1. Providing an overview of the learned features of 

filters in convolutional layers and neurons in fully 
connected layers.  

2. Interactively modifying the neuron/filter clustering 
results.  

3. Exploring multiple facets of neuron/filter.  
4. Revealing how low-level features are aggregated 

into high-level features. 
5. Examining the debugging information.   

 
Note that Lui’s requirements are obtained for a 

visualization tool that visualizes the network during training 
with access to all the inputs from the training set. This is 
considerably different for this project, as this project is 
aiming to visualize a pre-trained network’s response to a 
given input.  

Lui’s access to training information allows him to cluster 
neurons/filters. Also, training information allows him to 
encode debugging information in his visualization tool. 
Hence, requirements 2 and 5 from his list are not applicable 
for this project as this project’s goal is to visualize pre-
trained networks with no access to their training 
information. Moreover, there is no method for visualizing 
neurons in fully connected layers for a given input in a 
meaningful way. This is due to the nature of fully 
connected layers, in which spatial information of the input 
images are lost. Therefore, in this project visualizing 
convolutional layers remain as the only appropriate layers 
to visualize for a given input. 

Finally, after comparing the relevant requirements from 
Lui’s paper and combining them with our domain tasks, we 
added the following domain tasks to our list: 

 
• Identify the effect of applying different inputs to 

the system on the activation of the filters inside 
Convolutional layers. 

• Compare different techniques for visualizing the 
activations of the filters inside Convolutional 
layers to find the best technique for the specific 
dataset under study. 

 

D. Tasks: Domain-Independent 
Following the 9-stage design study methodology 
framework [16], we summarized our domain-specific tasks 
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into the following abstract tasks: 
 

Explore → Summarize  
� Overall Architecture of ConvNet 
� Activations of the filters in each 

Convolutional layer 
 

Explore → Compare 
� Different techniques for visualizing the activations 

of the filters inside Convolutional layers 
 

Locate → Identify  
� Filters that have learned useful features 
� Filters that are useless 

 
 

V. SOLUTION 
Our final solution was designed to achieve the tasks that 
were described in the previous section. Our over-arching 
goal is to help researchers tune the structure and parameters 
of Convolutional Neural Networks to improve their 
performance. At a lower level, our goal is to help 
researchers understand the high-level structure and 
activations of the filters inside Convolutional layers of the 
Convolutional Neural Networks they are researching.  

Consequently, we spent a lot of time on making sure that 
our tool works with all Convolutional Neural Networks. In 
addition, we provide our tool in a web-application, which 
allows researchers to upload their own network structure 
and filter activation to our server and immediately begin 
using our tool on their own network and training data.    

 To avoid visual clutter in our design, we do not visualize 
the connections between layers, or the nodes and edges of 
the network inside Convolutional and Fully Connected 
layers. Discussion with our domain experts determined that 
information about the connection between layers or inside 
Convolutional and Fully Connected layers is not really 
important in tuning network parameters to optimize over-all 
performance. The following section will describe the 
technique we use for visualizing the activations of the 
filters inside Convolutional layers. 

A. Visualizing Learnable Parameters 
We have decided to include two techno feature 
visualization methods. The most common way to do this is 
by visualizing the activations of each filter in convolutional 
layers. This method was our design choice as a naive way 
of visualizing learned parameters in the network. This 
choice was made for two main reasons. First, this method is 
very intuitive to understand, and relative easy to produce. In 
addition, it requires significantly less computation 
compared to more sophisticated methods. For instance, 
running this method for all of the convolutional layers in 
AlexNet, on a 2.4 GHz Intel Core i5, takes only 28 seconds.  

The other method we selected was GBP [8]. This method 
belongs to the family Deconvolutional networks, which was 
introduced for visualizing activations of filters in deeper 
layers. Among this family, a few different methods have 

been introduced in the past a few years. After reviewing 
original Deconvnet [7], back propagation [12], and GBP, 
We chose GBP as we observed this method to produce 
slightly more clear results. Fig. 3 compares the result of our 
comparison for the activation map of filter 20 in 5th 
convolution layer of AlexNet. All three images were 
retrieved from the same filter and all other variables 
remained constant. As illustrated in this figure, GBP gives 
the best result. 

 

 
(a) 

 
(b) 

 

 
(c) 

 Fig. 3.  Illustration of our comparative analysis on the family of Deconvnet 
visualization method: (a) Back Propogation; (b) Deconvnet; (c) Guided 
Back Propagation 

Our findings matched the claims for two different papers [9]. 
Also, computationally, all three methods are comparable. For us, 
running this method for all of the convolutional layers in Alexnet, 
on a 2.4 GHz Intel Core i5, takes only 920 seconds.  

VI. INTERFACES 
The visualization tool was carefully designed to meet all the 
requirements of this project. This tool is deployed as 
website application that users can start using after 
uploading the necessary files mentioned above, or by using 
our default files to launch a demo. The tool can be 
accessed at http://35.163.48.45:9374/. Fig. 4 illustrates an 
overview of our visualization tool for AlexNet and an input 
image of a weasel, retrieved from Imagenet dataset [21]. 

 

 
Fig. 4.  An overview of the visualization tool 

The visualization tool is split into 3 main views. Initially, 
the system was designed in a single view as opposed to 
multiple views showing the top level of hierarchy where the 
architecture was the only visible view. The system was 
designed based on the details on demand idiom, where the 
user could see the next level of hierarchy by clicking on the 
desired layer from the architecture diagram. The problem 
with the original design was its heavy reliance on user’s 
cognitive abilities to remember the architecture, the selected 
layer, and the rank of selected layer in the architecture. Also 



for selecting another layer, the user had to go back to the 
original view, and then select another layer to investigate. 
This extra effort required for viewing another layer caused 
the users to lose context in terms of where they are in the 
overall network. 

This design was then replaced with a multiple view 
design, where each view is designed for a specific purpose. 
The following section describes the three views that we 
have in our final design. 

 
1) Architecture Canvas 

This canvas contains the general information about the 
network. Fig. 5 illustrates this canvas in detail for AlexNet. 
On the very top the name and the number of layers are 
encoded as text fields. Underneath, the overview of the 
architecture of the network is displayed. The architecture is 
encoded as a chain of node-link diagram. Each node 
represents a layer. The type of the layer is encoded inside 
each node as plain text. The link between layer A and B is 
encoded as a directional line mark. This encodes the output 
of layer A is fed to layer B. The number of outputs is 
encoded as numerical text values above each link.  

 
Fig. 5. Illustration of the Architecture Canvas 

Also, as mentioned earlier in the report, one design 
choice for this canvas that we made was about whether to 
aggregate any of the layers in one node. Some of the 
existing CNN visualization tools aggregate some of the 
layers between two convolutional layers. We believe that 
this might be misleading to a novice user. For instance, 
aggregating convolutional and ReLU layers in one node 
might lead to a user thinking that ReLU is not a distinct 
layer. 

The last encoding for this canvas lies inside the nodes 
representing convolutional layers. These nodes contain a 
stacked bar summarizing the result of the annotation. This 
bar is placed at bottom of these nodes. Annotation is one of 
the features described in the interaction section. The 
stacked rectangles in the stacked bar are color coded in 
three different colors. Blue section indicates Good, red 
indicates Bad, and gray is used for filters that do not have 
any annotations. 

 
2) Details Canvas 

This canvas contains the detail on demand for selected 
layers in the Architecture Canvas. The selected layer 
determines the details displayed in this canvas. Therefore, 

the encoding differs based on the layer type. 
Fig. 6 illustrates the Details canvas for the second 

convolutional layer of AlexNet. In this view, switching 
between two different activation visualization methods and 
the parameters is possible by selecting the corresponding 
radio button. The activations are visualized as a grid of 
images.  

 
Fig. 6. Illustration of Details Canvas for a Convolutional Layer 

For probability layer, the classification results are 
visualized in a sorted bar chart. The bar chart filters the 
values shown to only the ones that are larger than a fixed 
threshold. The threshold is set to be 0.1. In the bar chart, the 
y-axis encodes the probability in percentage from 0 - 100. 
The x-axis illustrates the classes that achieved a score larger 
than the fixed threshold of 0.1. Fig. 7 illustrates the Details 
canvas for the “Prob” layer of AlexNet for the input image 
illustrated in Fig.  6. In this case “weasel” has the highest 
probability and is located on the left hand side of the x-axis. 

 
Fig. 7. The Details Canvas for a Probability layer 

For output layer, we show the confidence level of the 
network in classifying the input as one of the classes in a 
bar chart. Additionally, the top image on Flickr with the tag 
matching the name of the output class is shown. We believe 
this would be useful as the user might not be familiar with 
the name of the output class. For instance, if the network 
takes an image of a German shepherd and misclassifies the 
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input image of to be an image of Bedlington terrier, this 
feature will help the user to compare the similarities 
between the two breeds. Fig. 8 illustrates the Details canvas 
for the output layer of AlexNet. This figure shows the result 
for an input image of a weasel. 

 

 
Fig. 8. Illustration of the Details Canvas for the Output Layer 

The pooling layer parameters are encoded to visually 
represent the window size of the parameters. All the 
parameters in this layer could be encoded as a grid of 
squares. We believe showing a 3x3 grid of 9 squares is 
easier to grasp for the user rather than just showing the 
numerical values of this layer as plain text. Finally, all the 
other layers contain a set of parameters and they are 
encoded as plain text.  

 
3) Side Canvas 

This canvas contains the input image on the very top. The 
space below this image is reserved for labels and activation 
images to be played when the user interacts with the 
system. This canvas is designed to be on the right side of 
the screen at all times. It illustrates the selected layer and 
the selected texts. It is also locked to the same fixed 
location even during scrolling. We believe this is necessary 
because when the user is scrolling through the Details 
canvas, the user needs to see the input image for 
comparison. Allowing this canvas to scroll will push the 
input image off the screen if the user scrolls down. Fig. 9 
illustrates an example of the Side canvas for an input. This 
screen shot was taken while the user was hovering over the 
activation of filter 20th of the 5th convolutional layer in 
AlexNet. This will become clearer when we discuss in the 
next section where we discuss the possible user interactions 
in our system. 

 

 
Fig. 9. Illustration of the Side Canvas 

B. User Interactions 
In this section, the possible interactions of the user with our 
system are described. There are some obvious interactions 
such as highlight on hover for layers, or select and change 
border on click for all the nodes representing the layers in 
the main canvas. Also, upon clicking each layer, the name 
of the selected layer is added to the side canvas underneath 
the input image. However, we believe there are some other 
annotations that need to be explained further. The following 
sections categorize and describe the ways users can interact 
with our system in detail. 
 

1) Annotation 
In Convolutional layers, we visualize the activations of 
each filter for the input. These activations might indicate 
that a filter is not extracting beneficial features, or possibly 
extracts no features at all. Also, keep in mind that the user 
has the freedom in choosing the number of filters for a 
given convolutional layer. Since our tool could be used for 
improving the performance, a user might want to annotate 
the filters as useful/good, useless/bad, or leave them un-
annotated. For this reason, we have included this feature in 
our design. Fig. 10 illustrates an example of this feature in 
action. In this case the user has already annotated 42 filters.  
 

 
Fig. 10. Illustration of the Annotation Feature  

The user can annotate a filter to be good by a single left 
click, bad by double click, and undo the annotation by 
holding the shift key before a single left click. The 
summary of these annotations is contained inside the 
corresponding node representing the layer. 
 

2) 6.3.2 Details on Hover 
This feature allows the user to get extra detail about a 
specific visible element on mouse over. We have added 
tooltips for this purpose for the stacked bars summarizing 



the annotations in convolutional layers and for the bar chart 
representing the probabilities in the Prob layer. 
 

3) 6.3.3 Zoom on Hover 
This feature is available for all of the filters inside 
convolutional layers. The user can hover over an image 
representing the activation of a filter and see the large 
version of the image displayed on the right hand side, inside 
the Side canvas, juxtaposed under the input image for 
comparison. This allows easy comparison to the input 
image. Additionally, the label representing the 
identification number of the filter of interest is indicated 
above the enlarged version of the image. In Fig. 6, an 
illustration of this interaction is shown. 

VII.  IMPLEMENTATION 
This project is Mahdi’s MEng main project. Therefore, he 
was in control of this project and prepared all the data 
required for the visualization tool. That includes selecting 
the method for deriving the data and comparing and 
contrasting the available methods for visualizing 
activations.  
That being said, both authors contributed equally in coding 
the visualization tool. 
This section is divided into two portions. The first one 
(Data Generation) describes the tools we are providing our 
users for modifying their CNNs to make them usable in our 
system. The second section (Data Visualization Tool) 
describes the actual implementation of our tool (ConvLens). 
 

A. Data Generation 
In order to meet the requirements of this project, our 
visualization tool needs to be dynamic. This implies that 
our tool should be able to visualize any CNN that is fed into 
it. Therefore, careful considerations were taken into account 
for portability and generalizability of the data generation 
phase. We will explain this in more detail in the next 
section (Data Visualization Tool). 

Four data files are required to take advantage of the full 
capability of our visualization tool: a JSON file containing 
Architecture Information, a folder containing images of 
feed forward activations, a folder containing images of back 
propagation, and finally a JSON file of the output of the 
network for a given input.  

It is worth mentioning that in order for our tool to 
visualize the overall architecture and the numerical 
parameters of the network only the first file is required. 
However, for our tool to visualize the response of the 
network to a given input at least one of the other three files 
is required. In the following section our method for 
producing the data and what they are is described in detail. 
 

1) Architecture Information 
This file contains general information about the architecture 
of the visualized CNN. It needs to be saved in JSON text 
format and with the specific structure that is compatible 
with the visualization tool. For ease of use we have 
provided a sample version of this file. The user may modify 

the sample and manually or produce the file automatically.  
For this project, we have automated this process using 

Matlab and JavaScript. In order to achieve this we had to 
modify the Matlab’s deep learning library’s source code. 
we have made the script available in this project’s package. 
Instructions for how to produce this data are included in the 
software manual. 
 

2) Forward Activations 
As mentioned earlier, this method is a naive way of 
visualizing the result of applying each filter on the input in 
convolutional layers. For this project, we wanted to 
visualize this effect for every filter in every convolutional 
layer in the network. Fortunately, recent release of Matlab’s 
deep learning library includes an “activation” function that 
returns the numerical values of any filter in any layer; after 
it is applied to the input. By manipulating this function, we 
can produce images that resemble the effect of each filter 
on the input.  

These images are produce by following the steps 
mentioned below: 
 
1. Obtain the values of applying the activation function 

for filter 1 in convolutional layer. 
2. Normalize the result of 1, between [0,255] to produce a 

gray scale image. (This is needed because the filter 
weights are diverging values from (-∞ , +∞ ) and 
multiplying these values by the input (which is an 
image) values scales the diverging values of the filter. 
Therefore, we need to normalize the smallest value to 
be 0 and the largest value be 255 to produce a 
meaningful gray scale image. In Matlab, mat2grey 
function takes care of this normalization operation.) 

3. Save image to file with the name of 
“LayerNameFilterNumber.format”.  

4. Repeat step 1 to 3 until we reach the last filter in the 
last convolutional layer. 
 

We have written a script in Matlab that follows the above 
algorithm and produces all the images automatically. The 
script is included in the project package and the manual 
describes how to use the script. 
 

3) Guided Back Propagation 
Guided Back Propagation is the more sophisticated method 
of visualizing the result of applying each filter on the input 
in convolutional layers. Unfortunately, there are no native 
Matlab functions to support some of the required operations 
for this method. However, MatConvNet, a third party 
library for Matlab, released by Andrea Vedaldi from 
University of Oxford [22], makes this process easier to 
implement. Felix Grün has released an open source library, 
FeatVis that builds on top of MatConvNet. FeatVis 
supports Guided Back Propagation.  

It is necessary to note that CNNs are defined in a 
different manner in MatConvNet compared to Matlab’s 
native deep learning library. The user needs to convert the 
format of the CNN to the format compatible for 
MatConvNet following the guidelines and manuals 
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provided for this library. 
For the purpose of this project, we used FeatVis to 

produce the images for Guided Back Propagation to 
visualize the features from the input image that activated a 
particular filter the most. We have a written a separate 
scripts to automatically produce all of the images for all the 
filters in the network. This script takes care of converting 
the input image to the correct format for FeatVis and 
MatConvNet. We have also modified the source code of 
FeatVis to make this process automated and faster. The 
instructions for using the script are included in the manual 
for this project. 

 
4) Output of Class Scores 

This file is a simple JSON text file that contains an array 
“S” of scores. Each element “si” in the array with index 
“we” contains the scores of the input being classified to 
belong to class “ci”. The length of the array is equal to the 
number of possible classes of output. 

This file is simply achieved by using Matlab’s native deep 
learning library. This is done by using the built in function 
of “classify” and saving the result as a JSON text file. A 
sample of this file has been provided in the package. 

 

B. Data Visualization Tool 
Our tool (ConvLens) is designed as a web application, 
implemented using HTML, CSS, D3.js, and jQuery. Our 
design contains the following main views.   

 
1) Architecture Canvas 

This canvas was a designed using D3.js and raw JavaScript. 
All the code for this canvas is written from scratch. No 
other external libraries or code from other sources were 
used to implement this canvas 

The width of this canvas remains constant but the height 
of the canvas is adjusted dynamically, depending on the 
number of layers in the architecture.  

In the implementation, we found seven layers per row, 
and square side of length 60px to be reasonable values to 
choose. These values were chosen based on trial and error.  

The stacked bars are contained within each node 
representing the layers. The stack bars are placed at bottom 
one third of the area of each convolutional layer. The stack 
bars become visible after the user starts annotating a layer.  
No external library or code from other sources was used to 
implement this canvas 

 
2) Details Canvas 

This canvas displays the detail on demand based on the 
user’s interaction with the tool. The selected layer 
determines the details displayed in this canvas. Therefore, 
the implementation of this canvas is different based on the 
type of the selected layer. Aside from ReLU, 
Normalization, Drop Out, and Fully Connected layers, 
where simple text is displayed, visualizing other layers 
required more development effort. In the following section 
we discuss the implementation details for each of our layer 
types. 

a) Convolutional Layer Details 
This layer reveals the effect of applying filters on the input. 
In addition, numerical values of all the parameters of these 
layers are displayed for this layer type. On top of the 
canvas, the radio buttons are implemented in HTML. 

A grid of SVG images using D3 was implemented to 
show the images of post-filtered input. The height of canvas 
is adjusted based on the number of filters in each layer. The 
elements within the grid have constant width and height. 
The size of widths and heights are determined based on trial 
and error. The parameters are displayed as plain text in 
HTML. 

 

b) Pooling Layer Details 
The encoding in this layer was coded in D3 and draws basic 
grids to show window size of all three parameters of this 
layer. 
 

c) Probability Layer Details 
The sorted bar chart for this layer was implemented by 
modifying the given example by the author of D3.js [23]. A 
threshold of 0.1 was set to filter the shown data points in 
this chart. 

 

d) Output Layer Details 
This layer displays a bar chart of the confidence in 
classifying the output. This bar chart is coded in D3. Below 
the bar chart, the image is an SVG image that is queried 
from Flickr by modifying a code from Stack Overflow [24] 

 
3) Side Canvas 

This canvas is another SVG canvas that illustrates the input 
image. The canvas and all the details illustrated in it are all 
coded using D3. 
 

VIII. RESULTS 
In this section, we discuss two scenarios that aim to 
demonstrate how our tool can be used to complete the 
domain tasks discussed earlier in this report.  

A. Exploring the input to the network and the effect 
of applying convolution throughout the system 
Donald, a hobbyist, takes a picture from himself and 
wonders what if a well-known CNN, called AlexNet could 
classify him as a person. He, then, uses Matlab to feed 
AlexNet his picture. Surprisingly, AlexNet, classifies him 
as a neck brace. Donald knows that deep layers in the 
network extract high level features. He then wonders if he 
could explore every filter in the last convolutional layer to 
see what features from his picture excited the filters in that 
layer the most. 

Donald runs our data generation Matlab script and feeds 
the results into ConvLens. He then looks for the last 
convolutional layer in AlexNet. By looking at the overview 



of AlexNet’s architecture visualized in ConvLens, Donald, 
quickly spots that “conv5” is the last convolutional layer in 
the network. He also observes from the shown architecture 
that this layer has an output value of 256. Donald knows 
that the number of filters in Convolutional layers is equal to 
the number of outputs; therefore, he expects to investigate 
256 images in this layer. He then selects this layer. Fig. 5, 
illustrates this architecture.  

The Details canvas loads all the 256 images produced 
using GBP method. From the overview, he spots that most 
of the images emphasize the bottom of the image. He picks 
a few of the images to investigate further. He first hovers on 
the output of filter 256. By musing over the desired filter, a 
larger version of the image is displayed under the input 
image, which allows Donald to compare the result of filter 
10 to the original image. This process for a different input is 
shown in Fig 6. Finally, repeating this process for all the 
filters, allows Donald to confirm that about one third of the 
filters are extracting his neck area, which explains why his 
AlexNet classified him as a neck brace.   
 

B. Optimizing the Number of Filters 

Yann, a biomedical engineering student, recently has 
learned about CNNs in his CPSC540 course. He 
implements a CNN that takes an image and classifies it is 
an image of a dog or a cat. In his implementation, Yann 
chooses to include 3 convolutional layers in his 
architecture. For the number of filters in each convolutional 
layer, he decides to include an arbitrary number of 256. He 
chooses this value by comparing his network to AlexNet. 
Unfortunately, Yann’s initial attempts at classifying 
common objects result in poor classification accuracy. He 
then wishes to gain a better understanding of how these 
filters respond to his set of test images. Yann, knew his 
classmates in CPSC547 have created ConvLens, a tool that 
could help him with this task. Therefore, he decides to give 
ConvLens a try. 

He sets up ConvLens to understand how the filters in the 
convolutional layers respond to a few test images. For a test 
image, Yann investigates the 3 convolutional layers in his 
network. He uses the annotation feature of ConvLens to 
annotate each filter as either useful or useless by visually 
examining the activations of each filter for the input. He 
marks the filters that produce noisy images, or pure black, 
as useless, by double-clicking on each image; and marks the 
rest as useful by a single click on the image.  

Following this step, Yann records the overview of his 
annotation results by taking a look at the stacked bar charts 
contained inside the nodes that represent convolutional 
layers. Fig 10 illustrates the same task for a different CNN 
and different input. We have not implemented the 
functionality to export the annotations yet; so, currently 
Yann has to record the stack chart results himself. 
Subsequently, He re-runs this experiment for a few other 
test images and concludes that for all the test images, the 
3rd convolutional layer contains over 80 useless filters. 
Yann then reduces the number of filters and in this layer by 

one third and verifies that this process has improved the 
classification accuracy of the network. 

IX. DISCUSSION AND FUTURE WORK 
Even though we did not perform a formal user evaluation of 
our tool in time for this report, we did perform an informal 
evaluation by showing our tool to our domain experts and 
several none-expert individuals. Based on our observations 
during these demos, we believe that our solution helps users 
achieve the domain tasks described in this paper. 
Furthermore, after every single demo, participants showed 
interest in exploring our tool further and possibly using it in 
their own research. In several instances, we were asked 
whether ConvLens is open sourced, where the Github 
repository is, and whether we are going to keep hosting it at 
the current address or possibly on a new domain 
comparison. 

In with the most common tools that are currently 
available for visualizing CNNs, ConvLens has three major 
strengths: it provides an architectural overview of the 
network without any visual clutter; it provides multiple 
methods for visualizing the learned parameters inside 
Convolutional layers; and, most importantly, it can be 
easily used with any CNN and any training/ test data.  

We have decided to allow our users to upload the 
structural information of their CNNs to our server and we 
make them available to the public because these files are 
relatively small in size; pose less privacy concerns 
compared to the images visualizing the learnable 
parameters; and, most importantly, can be of great value to 
other researchers or hobbyists. 

On the other hand, uploading the images that visualize 
the learnable parameters inside CNNs onto a server might 
be difficult due the sheer number of these images (even 
though their file sizes are usually small) and privacy 
concerns. Consequently, our tool only requires a link to the 
directory that contains these images on user’s private 
computer (as a local host) or any other servers. Finally, it is 
important to point out that the implementation of our tool 
(ConvLens) allows it to visualize the learnable parameters 
using any technique that produces an image. In other words, 
nothing in our implementation limits the user to use only 
Forward Activation or GBP for creating images that 
visualize the filters inside Convolutional layers.       

In terms of future works, we are hoping to have a more 
dynamic front-end in terms of screen aspect ratios. 
Currently, the user needs to adjust the zoom of the browser 
to be at 75% for the tool to fit entirely on the screen. Also, 
the overall appearance of the tool and the layout requires a 
fair amount of polishing.  

On the backend side, we are working on providing the 
users with the functionality to export their annotations, and 
possibly perform quick statistical analysis on them.   

On the visualizing side, it will be extremely useful to 
rank the filters (inside convolutional layers) for each input 
image based on the relative importance of the filter. There 
could be several measures to determine the importance of a 
filter, but, so far, we are planning to use the average weight 
of the activation map for each filter. Moreover, while we 
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couldn’t find any appropriate methods for visualizing the 
Fully Connected layers for a given input, further 
investigation into this matter is could be fruitful. Finally, 
we are planning to integrate our Matlab and Java 
visualization scripts that are used for data generation into 
our tool, which would further streamline the process for 
researchers to use our tool with their own network and data.  

X. CONCLUSION 
In this project, we designed and implemented an 

interactive tool that is capable of visualizing any 
convolutional neural networks, with any training/ test sets, 
and multiple methods for visualizing the learnable 
parameters. Our tool (ConvLens) is currently served on the 
web as a fully functional application. The main 
contributions of this project are divided into two categories 
of data visualization and data generation.  

For the data generation phase, we have reviewed the state 
of the art method of visualizing the learnable parameters 
within convolutional layers of CNNs. We have selected two 
different methods and provided the software to replicate 
these two methods on other CNNs and datasets. In addition, 
we have provided the software to export CNNs architecture 
into a compatible JSON text file for our visualization tool. 

For the data visualization phase, we created a standalone 
tool that could work with the data produced in any 
software. Our tool (ConvLens) visualizes an overview of 
the architecture, the activation map of convolutional filters 
for an input using multiple methods, the tunable parameters 
of all the layers, and the classification results of the network 
for the input image. Additionally, our tool allows the user to 
annotate the filters in convolutional layers to keep track of 
the layers that require fine-tuning of the number of filters.   
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