
Teamline: Visualizing small team code contributions

Nick Bradley
nbrad11@cs.ubc.ca

Felix Grund
ataraxie@cs.ubc.ca

Fig. 1. The Teamline visualization. The overview is shown in the left half of the figure. In this view the user can quickly identify teams
with non-uniform contributions by noting cells with higher saturation. The sparkline in the cell indicates the grade for the team over time
on the y-axis. Clicking a cell takes the user to the detail view, shown on the right. Here, the grade and contributions of team members
are shown in three juxtaposed charts. Comparisons among team members can be done using the gallery view at the bottom. The user
can filter by deliverable in either view by selecting the corresponding button at the top of the visualization.

Abstract— Determining and understanding contributions to a shared code base can be helpful for monitoring developer efficiency,
allocating work items and understanding how and why changes were made. To support this task, we introduce a method for deriving
contribution using test execution results and code coverage reports. Our visualization tool, Teamline, then presents these metrics in
two different views. An overview shows the uniformity of contributions across hundreds of teams. The detail view shows the test pass
rate progression and offers a way to compare up to ten contributors at-a-glance with a small-multiples view. Pairs of contributors can
selected to get a detailed comparison in a large side-by-side view.

1 INTRODUCTION

Writing code is a social activity that requires input from all members
of a team. Scrum is a popular agile framework that emphasizes this
while encouraging awareness of all the work being done by the team.
To achieve this, teams run daily Scrum meetings where each developer
provides a brief description of what tasks they have done thereby
making explicit the contributions of each member.

Scrum works well for co-located teams where it is easy to conduct
daily meetings but can be hard to implement when developers are
distributed. This is common in open-source projects. Developers
typically only interact with each other online so it can be hard for
project managers to track individual contributions. GitHub, a popular
git hosting service for open-source projects, attempts to address this
issue by providing a contributors graph (Fig. 5) but it has very limited
functionality.

Our tool, called Teamline1, aspires to provide a visual means of
identifying contributions of each team member. To limit the scope of
the project we designed Teamline to meet the needs of a single software
engineering course at UBC. The course was designed to support a
limited version of Scrum but shares many of the challenges of co-
located teams and thus provides a reasonably-sized use-case for us to
support.

A learning outcome of this course is to develop project management

1Demo: https://nickbradley.github.io/teamline

and Scrum skills in the context of a programming project. In particular,
students need to develop the ability to determine how equitably they
are contributing to the project. To help them learn this, the teaching
assistants (TAs) act as a Scrum leader in short meetings where they as-
sess the contributions of each team member. Between the meetings, the
students work as a co-located team, using online project management
tools to communicate work items with each other.

It is the responsibility of the TAs to scale-back grades of students
who did not make a significant contribution before a deliverable dead-
line. Unfortunately, this can be a hard task for the TA due to both the
amount and uniqueness of code written for the project. While Teamline
has been designed explicitly for the task of assisting TAs understand
contributions made to the project, the framework we developed should
generalize to other team-based coding projects.

This paper makes two major contributions.

• First, we define several derived attributes that are designed to
indicate to what level each member of a team contributed to the
overall success of a project. We also give a formula that combines
individual contributions to provide a single number indicating the
uniformity of contributions.

• Second, we provide a prototype visualization that uses the afore-
mentioned contribution attributes to assist users in determining to
what extent each member of a team contributed. It uses a heatmap
that shows the uniformity of contribution of the users across all
cells. This acts as an overview. A detail view shows the contri-
bution of individual commits in side-by-side views, facilitating
comparison over time between team members.

1

The remainder of the paper is structured as follows. Section 2 dis-
cusses related work. Section 3 defines the domain problem and defines
the data attributes and tasks. We present our visualization solution in
section 4 and describe how it supports the tasks. Implementation details
for Teamline are presented in section 5. Section 6 presents a scenario
that shows how Teamline is intended to be used to support the intended
use-case. A discussion of how well Teamline fits the scenario is given
in section 7 where we also discuss future work. Finally, we conclude in
section 8.

2 RELATED WORK

Our visualization is designed to show each person’s contribution to a
team-based project. Previous work by Kelly et al. [7] examined whether
visualizing contributions in a team-based, collaborative game leads to
fairer contributions by team members. Their approach was based on
using an attribute, meters, which is derived from existing artifacts that
enable awareness of contributions in the game. We use a similarly-
purposed derived attribute, contribution, that indicates how much each
team member contributed to the overall grade. They found that only
using this single attribute could undermine the efforts of collaborators
if it doesn’t adequately “reflect important aspects of individual work in
the context of team activity” [7]. Also these tools should be combined
with other methods to more robustly evaluate contribution in real-time
or retrospectively. This finding supports our use-case. Teamline allows
team members to see who is contributing to the overall grade of the
project as it progresses and helps the TA better understand how the
work was divided within the team during the retrospective meeting.

The most critical aspect of our visualization is the ability to easily
and accurately compare indicators of contribution over time. Much
work has been done exploring effective ways to visualize comparisons
between objects. Gleicher et al. [5] gives a taxonomy of visual designs
used for comparison tasks, noting that all designs are assembled us-
ing juxtaposition, superposition and explicit encodings (computing the
relationships between objects and providing a visual encoding of the
relationships). The authors distinguish these categories by the principal
mechanism used to make connections between objects: juxtaposition
uses the viewers memory; superposition uses the visual system; and ex-
plicit encodings use computation to determine the relationships. These
categories can be combined to form hybrid categories. Munzner talks
about these approaches in detail in [8]. Teamline takes a hybrid ap-
proach by both superimposing each contributors’ metrics in the same
view and by visually encoding the computed contribution score.

Our vis was inspired in part by ShiViz2 [1] which shows messages
being passed among a collection of processes to verify that the happens-
before relation is not violated. We also looked at commit graphs, like
the one built into BitBucket [3], which visualize commits in time, and
gallery and film strip views found in most photo viewing applications.

Some visualization tools can be used to show contribution to team-
based projects that use the git source control system. The most relevant
to our specific use-case would be GitHub’s Contributors graph [4]. It
uses filled line graphs to show either the number of commits, number
of lines added, or the number of lines deleted over time. There is an
aggregate view that shows these metrics for all contributors and there
are also individual contribution charts. Users can select a time range in
the aggregate view to see the individual contributions only during that
time range. This visualization is not sufficient for our task because it
only shows the number of commits made by each team member which
may not be indicative of their actual contribution to the final grade.
Other tools exist that also visualize metrics exposed by git, for instance
GitHub Visualizer [9], but share similar shortcomings as GitHub’s
Contributors graph.

3 DATA AND TASK ABSTRACTIONS

3.1 Domain Background
Our tool uses data collected by AutoTest3, an automatic grading service
used to grade code submissions for students in CPSC310. The course

2https://bestchai.bitbucket.io/shiviz/?
3http://github.com/nickbradley/autotest

is structured around a term-long coding project that is divided into 5
deliverables (or sprints) completed by teams consisting of 2-3 students.
The first 3 of these deliverables are graded by a combination of AutoTest
and TAs. Teams manage their shared code on GitHub4 using a basic git
workflow: students pull the latest code changes from GitHub, commit
their modified code locally and then push those commits to GitHub
for other members to see. Every time a student pushes their changes,
AutoTest is automatically invoked and runs a suite of instructor-written
tests against the modified code. In addition, it computes the amount of
code covered by student-written tests. Results are stored in a NoSQL
database with each record corresponding to a single submission (push
event).

3.2 Data Description

The grade dataset is treated as a static table which contains over 44,000
submission records for 285 students in 139 teams. From this dataset
we use the attributes shown in table 1. From those attributes we created
the following derived attributes:

Pass rate contribution. A student’s commit is considered as con-
tributing to the team’s pass rate if one or more instructor-written tests
are passed for the first time in this commit. The contribution is calcu-
lated as the number of tests passing for the first time divided by the
total number of tests passed by the team. We do not visualize this value
directly. Instead, we visualize the accumulated value over all commits
to ensure that the plotted points are monotonic. This is a quantitative
attribute ranging from 0-100%.

Coverage contribution. We consider a contribution to the coverage
grade to occur when a commit increases the coverage grade beyond
anything seen so far. The amount of the contribution is the amount
by which which it exceeds the running maximum. Again, we accu-
mulate this value to ensure a monotonic line. Note that the coverage
is increased when a student writes (more) tests that execute a higher
proportion of their code or they change the total lines of code. This is a
quantitative attribute ranging from 0-100%.

Overall contribution. The overall contribution is computed as the
sum of 80% pass rate contribution and 20% coverage contribution
to match the weights used in computing the deliverable grade. This
attribute is quantitative and ranges between 0 and 100%.

Within-team contribution uniformity (CU). This measures how
evenly the team members contributed. It is a quantitative attribute that
ranges from 0 to 1 where 0 indicates that one team member did all the
work while 1 indicates a completely uniform workload split where each
member contributed equally. This attribute is computed by taking the
sorted pairwise difference of the overall contribution, computed as 80%
test grade contribution and 20% coverage grade contribution, of each
team member. More specifically, if m is the number of team members
and ui is the overall contribution for the ith team member, sorted by
overall contribution, then we have

CU = 1−
m−1

∑
i=1
|ui−ui+1|. (1)

3.3 Task Description

After a submission deadline, TAs meet with their assigned teams to
conduct a retrospective to discuss any challenges that arose during the
sprint and to ensure that the work was equitably distributed among the
team members. This typically consists of a TA asking some questions
designed to gauge a student’s comprehension of the task and code.
They may go so far as to explicitly and privately ask each student how
evenly they felt the workload was split. Based on the retrospective,
the TA assigns a scaling factor to the deliverable grade. For example,
if the team got 90% on the deliverable but one member did most of
the work, the final grades might be 90%*1.0 = 90% and 90%*0.6 =
54%. Unfortunately, it can be hard to determine how much work was
done by each student from these conversations since the team member

4http://github.com

2

Table 1. Dataset Attributes.

Attribute Name Attribute Type Description
pass rate Quantitative Percentage of instructor-written tests that passed against student code.
coverage Quantitative Percentage of student code executed by student-written tests.
grade Quantitative Computed as 80% pass rate + 20% coverage.
timestamp Sequential Unix time of record creation.
commitID Categorical The (truncated) SHA-1 hash of the submitted commit.
githubID Categoricala The GitHub ID of the student making the submission.
team Categoricalb The team number, stored as teamXXX, where XXX is a number between 2 and 199.
deliverable Sequential The submission deliverable, which can have values d1, d2, or d3.
a 285 values currently; max < 1000. b 139 values currently; max < 1000.

Table 2. What-Why-How analysis of Teamline.

What: Data Table of graded commits with attributes described
in table 1.

What: Derived Measure of contribution to pass rate and cover-
age; contribution uniformity. These are discussed
in section 3.2.

Why: Tasks Present the uniformity of contributions and sum-
marize the team’s commit history. Identify teams
with highly non-uniform contributions.

How: Encode We used a heatmap with sparklines in the
overview and line charts in the detail view. Marks
are positioned on a common time scale with color
indicating the attribute that is being encoded.

How: Facet Overview + detail views. Detail view is parti-
tioned into side-by-side views.

How: Embed Superimpose sparklines on the overview’s
heatmap cells.

How: Reduce Filtering is done by selecting the team and the
deliverable.

who contributed very little will attempt to spoof the TA while the hard-
working one may not want to rat out their partner. One possible solution
is to look at the commit history on GitHub to determine how many
commits each student made. This can be a decent proxy but can be
misleading since different people have different commit habits (i.e.
some will commit every line, others only large changes) and they may
not reflect the actual contribution to the grade (i.e. commits that don’t
directly increase the grade).

From the description, we can identify two distinct tasks that a TA
is expected to perform. The first is to understand the uniformity of the
contributions. To support this task the visualization needs to present the
contributions to the user in a way that makes it apparent if contributions
of one person where much larger or much smaller than the others. The
second task is to summarize the commit history of the team. We discuss
how Teamline enables these tasks in the next section.

4 SOLUTION

In this section we describe our visualization solution and analyze it
using the What-Why-How framework provided by [8] for which table 2
provides a summary.

Teamline is faceted into two views: an overview providing a sum-
mary for all teams and a detail view for each team. The content shown
in both the overview and the detail view is filtered by using the controls
above the charts, labelled D1, D2, and D3, to indicate the corresponding
deliverable. To filter by team, the user can select the corresponding
heatmap cell in the overview or by updating the team number shown in
the detail view.

4.1 Overview
The user is first presented the overview shown in figure 25 which uses
a heatmap to encode the within-team contribution uniformity where
a higher saturation indicates a more uneven contribution distribution.

5The highlighted cell is used in section 6 and can be ignored for now.

We initially used red for the hue but later decided on orange because
we considered red to be too negative. We chose a heatmap because
it is able to accommodate the approximately 200 teams in a single
view without needing to scroll. Showing the contribution of every
team on a single page is important so that the user is able to quickly
identify teams with one member contributing less than the others. To
further increase the information density and utility of the overview,
we embedded sparklines in the heatmap cells. Sparklines are an ideal
choice in this instance because they show trends without the extra
clutter of axes found in true line charts. However, they closely resemble
line charts which helps maintain consistency with the detail view. We
opted to use the same color as in the detail view both for consistency
and because it contrasts well with all saturation levels of the heatmap
cell. The sparklines help the user see how teams are progressing based
on grade and, combined with the saturation, let the user quickly identify
dysfunctional teams that warrant further investigation in the detail view.

4.2 Detail View

Clicking on a heatmap cell switches to the detail view shown in figure 3.
The detail view is based on the team that was clicked on in the overview
and can be changed on the fly by changing the team name in the menu
bar which will result in redrawing operations of all charts. This view
includes a stage area at the top that is partitioned into three side-by-side
line charts and a gallery area with a variable number of small line
charts at the bottom. The stage area contains the grade chart (left)
and two contribution charts (middle and right). All three charts share
a common y-axis which encodes time. We chose this configuration,
instead of using the x-axis to encode time, because version control
systems commonly design their commit graphs that way and it allows
us to take advantage of the wider screen aspect ratio of most modern
consumer monitors. The x-axis is used to encode attribute values which
differ based on the line chart. For the grade chart, the x-axis encodes the
percentage pass rate, percentage coverage, and the overall percentage
grade. The contribution charts encode the percentage contribution
to pass rate and percentage contribution to coverage with the x-axis.
Because all of the attributes are quantitative, we encode them using
a line chart. We could have used a scatter plot but decided it was
important to connect the point marks to make it easier for the user to
trace changes. We also made the line chart interactive by allowing users
to see a tooltip containing details about individual commits by hovering
over the point marks. To help us choose reasonable colors for the chart
lines representing the five attributes, we used a 5-class qualitative color
scale from Color Brewer6 [6].

5 IMPLEMENTATION

The implementation of Teamline consists of (1) a backend that retrieves
our data from the AutoTest database, applies the required transforma-
tions on the data and serves it, and (2) a frontend that is responsible for
creating the visualizations and handling user interaction in the browser.
The following sections describe these two parts in detail7.

6http://colorbrewer2.org/
7See appendix A for a breakdown of work by authors.

3

Fig. 2. Sample overview

Fig. 3. Sample team view for Team127

5.1 Data Transformation (backend)

Teamline uses the CPSC310 course project data captured in a CouchDB
noSQL database during term 2 of the 2016/17 year. We made a copy
of this database after the project was complete and deployed it on a
personal server. The database is over 14 GB and contains approximately
44,000 commit records which contain details about the committed
code including the pass rate against the instructor-written tests and
the percentage of code the team covered with their own tests. These
fields are extracted from the database using a map-reduce view whose
code is available in contribs-by-team.js. The view emits a list of
commit records which can be optionally filtered by team, deliverable
and timestamp. On top of this view, we implemented a list function,
whose code is available in contrib.js, that takes as input the filtered
list of commits and outputs a list of team objects: aggregates of all
the commits made by the members of the team. It also computes the
contribution metrics discussed in section 3.2.

One of the challenges encountered when preparing the dataset was
learning to work with the list function framework used by CouchDB.
It operates by automatically iterating over each record emitted by the
underlying view which means that the programmer is responsible for
keeping track of the records as they are made available. To make this
part easier, we ensured that the underlying view emitted records in
order first by team, then by deliverable and finally by timestamp. In
this way, we were able to determine when records for a new deliverable

or team by checking for differences between these fields for the current
and the previous record. This check also gave us an opportunity to run
aggregates over the entire deliverable or the entire team. Even with
these checks implemented, we still need to keep track of which user
the record was for since they are interleaved by timestamp.

The Teamline data is extracted from CouchDB by making an HTTP
request to the contribs-by-team view without specifying any filters.
The response contains a JSON file listing metrics for all the teams in
the course. A complete description of the emitted fields can be found
in data-guide.md. Currently, we save this JSON data to the file
teamline-data-min.json for use by the fronted. Future versions of
the frontend could directly request the specific data it needs from the
HTTP endpoint without the need for an intermediate JSON file. The
decision to use a file was made to simplify the deployment of the demo
but the endpoint makes production deployment straight forward.

5.2 Visualization (frontend)

The Teamline visualization was implemented as a Web application
frontend with a simple architecture: (1) index.html with HTML
markup and templates, (2) teamline.js with program logic of the
application (JavaScript) and (3) teamline.css with stylesheets for
layout and design (CSS).

Teamline uses a number of libraries and frameworks aiming to
maximize maintainability and reusability according to the DRY8 pattern
in software engineering. The Teamline stylesheet (teamline.css) is
generated with the SASS9 CSS precompiler. We used the selector
nesting feature to avoid duplicate CSS selector code and variables for
repetitive CSS property values. After the initial HTML markup in
index.html is rendered on page load, numerous HTML fragments
are rendered dynamically with JavaScript based on user interaction
and the data received from the backend. To make this process as clean
and robust as possible, we included the Handlebars10 templating en-
gine. Templates are contained as script tags in index.html with
a type="text/x-handlebars-template" attribute, initially com-
piled in JavaScript on page load and then parametrized and rendered
during runtime of the application. We included jQuery11 for DOM
manipulation and general extended JavaScript library functions since
it has become a standard in Web programming and the authors are
acquainted with it. The line and sparkline charts in Teamline are drawn
with NVD312 which is an extension to D313 [2]. We decided on NVD3
because it supports our charting requirement with the least amount
of repetitive drawing logic and exposes the underlying D3 API for
scenarios when its capabilities are not enough for our use-case. We
included Moment14 for date formatting because we considered it more
intuitive than the respective functions exposed by D3. We included
Twitter Bootstrap15 for simple general application styling.

The key characteristic of the Teamline application is the concept
of one data object and one state object that are global to the module.
The data object is populated after the data for Teamline was fetched
with one initial request to the backend on page load. Teamline does
not require further HTTP requests to the backend. We decided on a
one-request pattern because this gives us maximum performance and
the small amount of data required (~2MB) makes this approach feasible.
The state object determines what data and view is visible on the screen.
Whenever the state object changes, the view is updated accordingly.
This approach is implemented with the Observer pattern16: events are
dispatched upon state change (observable) and the respective listener
(observer) updates the view. This state-based implementation enables
us to redraw the current view with a simple state-update action and we

8http://wiki.c2.com/?DontRepeatYourself
9http://sass-lang.com/

10http://handlebarsjs.com/
11https://jquery.com/
12http://nvd3.org/
13https://d3js.org/
14https://momentjs.com/
15http://getbootstrap.com/
16http://www.oodesign.com/observer-pattern.html

4

can be generally open as to how the state is changed. The state object
contains fields for the current deliverableName, teamName, view
(’overview’ vs. ’team’) and users (visible in the contribution views).

The overview view is created as a simple container with a variable
amount of sub-containers (’team cells’) based on the number of teams
in the current deliverable. Cells are sized to fill the available space
in their parent container. The background of the cells (encoding the
team’s distribution of contribution) is created dynamically using the
lightness value of the HSL color scale, where 100 is most equal con-
tribution (white) and 50 is least equal contribution (dark orange). The
value between 50 and 100 is calculated using the contribution num-
bers served by the backend for each team (see section 3.2). Sparkline
charts (encoding the team’s grade) are then drawn to each cell. We
initially drew NVD3 line charts for each cell which confronted us with
considerate performance issues and we switched to NVD3 sparkline
charts in consequence which improved performance significantly (from
~8sec to ~2sec). Since the drawing operations for the sparklines are
still visible to the user we only perform the drawing once for each
deliverable (i.e. switching back and forth between deliverables will not
result in redrawing operations). The sparkline’s x-axis width is scaled
back dynamically based on the team’s final grade because NVD3 scales
sparklines to fill the available space by default. Clicking on a team cell
switches from the overview to the team view for the target team (by
updating the view and teamName fields on the global state object).

The detail view consists of three line charts (the ’stage’) and an
array of thumbnail line charts (the ’gallery’). All charts are drawn as
NVD3 line charts with different configuration settings. In our imple-
mentation this is visible in a call chain with different abstraction level
and configuration at each step:

drawTeamCharts
|__ drawGradeChart
|__ drawLineChart

|__ drawGalleryCharts
|__ drawIndividualChart
|__ drawLineChart

|__ drawUserCharts
|__ drawIndividualChart
|__ drawLineChart

Changes in layout and design to the charts were mostly implemented
with CSS because NVD3’s configuration capabilities often turned out
to be too limited for our use-case. Along the same line, we decided to
implement the chart legends and the username captions on our own with
a dynamic template and HTML/CSS because NVD3 did not provide
us appropriate means. Tooltips are rendered dynamically upon hover,
parameterizing a template with data for the target commit depending on
the chart type (grade chart vs. contribution chart). Whereas the grade
chart on the left remains static for the current team view, the contents of
the two contribution charts on the right change dynamically depending
on what users are selected in the gallery (by updating the users field
on the global stage object).

6 RESULTS

Teamline was designed specifically for the use-case of supporting TAs
in grading students for the course CPSC 310 Introduction to Software
Engineering at the University of British Columbia. The course is char-
acterized by multiple deliverables and a retrospective session after each
deliverable with the TA and each team member individually. Currently,
students are required to hand in an individual contribution file for each
deliverable that points out how they contributed to their implementation,
outlining their major commits and evaluating what went well or bad
during the ’sprint’. Figure 4 shows an example contribution file.

Using this contribution file as a basis, the TA will then talk to the
team members and try to assess if they contributed evenly to the de-
liverable. The TA may use information provided by Github, like the
deliverable’s commit history and contribution graphs (see Figure 5) to
obtain a better picture for the assessment. If an uneven contribution is
visible, the TA is then to downscale the team member who contributed

Fig. 4. Sample contribution file

less. As described earlier, this assessment can be a very challenging
task with only the information provided.

Fig. 5. Sample contribution graph showing number of commits and code
churn by contributor

Teamline makes this assessment significantly easier. In this sam-
ple scenario, the TA is to assess the contribution of each member in
Team127, from which the previous sample contribution file and graph
(figures 4 and 5) were taken. In the overview, the TA is given a first
picture of the team’s final grade and distribution of contribution (see fig-
ure 2 with Team127 highlighted). Although the contribution file from
User1 (figure 4) would indicate that contribution to the deliverable was
distributed fairly and both team members tell the TA exactly that, the
TA will see immediately that the team cell has a dark orange color
(highly saturated color indicating uneven distribution) and become
suspicious upon the students’ statements.

The TA then clicks on the table cell and the team view appears (see
figure 3). The left chart shows the team’s general performance with a
very good final grade (blue line) of 99%. Both pass rate (orange line)
and coverage (green line) switched significantly back and forth during
progress on the deliverable which often indicates regression bugs in the

5

team’s code and uncommenting parts of their code. More significant
than the overall performance is the unequal distribution of contribution
visible in the two contribution charts on the right. Whereas the chart for
User2 on the right shows almost linear improvements in pass rate (blue
line) and coverage (green line), both lines remain at 0% on the y-axis
for User1 on the left side. This indicates that User1 was not responsible
for any improvements on pass rate and coverage in this deliverable and
contribution was highly uneven. The charts also tell that User1 is the
author of only 4 commits while User2 is responsible for 16 commits,
which is another indicator for uneven contribution.

In this scenario, the TA therefore has a much better picture of how
each team member contributed and will very likely downscale User1
and/or give more credits to User2.

7 DISCUSSION AND FUTURE WORK

7.1 Limitations of Contribution Metrics
In section 3.2 we defined two different ways to measure contribution
to a team-based coding project and here we discuss some of their
limitations. The pass rate contribution is an all-or-nothing measure
meaning that it only counts code that increases instructor-written tests,
neglecting all supporting code. For example, it could be the case that
one member writes many lines of code, commits them without passing
any new tests, and then their partner makes a small change which causes
several tests to pass. In this example, the partner would be given all
the credit. However, this can be largely mitigated by ensuring that
instructor-written tests are very focused so that small changes to the
code would be captured.

Determining contribution to the coverage score can also be chal-
lenging due to the fact that small changes to either the student-written
test suite or the actual code can cause large changes to the coverage
score on which the coverage contribution is based. We partly address
this issue by only counting changes that cause the coverage score to
increase beyond the running maximum.

In both cases, the contribution measures lack robustness and are
too dependent on individual metrics. For instance, neither takes into
account the developer’s skill or the time/effort it took for them to write
the code. Also, the strong dependence of the contribution measures
on the underlying pass rate and coverage make it hard to generalize to
datasets that use different measures of code change and improvement.
We discuss some approaches to these problems in the future work
section.

7.2 Limitations of the Visualization
Time constraints prevented us from a full evaluation of Teamline but
we were able to elicit feedback from members of the software practices
lab; many of whom are or have been TAs for CPSC310. The most
common comment was that the “axes are swapped” which lead to minor
confusion when interpreting the visualization. While we noted that
other commit visualization tools like Gitk17 show time vertically and
that comparing two line charts by stacking them can lead to visual
distortion, it might be necessary to reevaluate the decision to show
time on the y-axis. Another comment suggested that the class average
should be shown in the grade chart in the detail view so that the TA has
a benchmark for the selected team.

The grade chart in the detail view can become cluttered, obfuscating
certain commits. This issue is partly due to the high variability of
grades between commits which causes the lines to cross a large portion
of the chart in a zig-zag fashion. Some commits are special in that
the student made a request to see their grade, typically because they
believe they have passed more instructor-written tests. We may wish
to highlight these commits since it is likely that they would form a
(nearly) monotonically increasing line. It would also be possible to use
the size of the point marks to encode another quantitative attribute such
as code churn or the number of lines being committed.

Finally, it could be the case that a TA would like to see how a team
has progressed over deliverables. Currently, the TA would need to use
their working memory and switch between each deliverable but this is

17https://git-scm.com/docs/gitk

not ideal. Instead, we should include an ALL option in the deliverable
selector that would remove the deliverable filter.

7.3 Future Work

As mentioned earlier, it is important that we enhance the robustness
of the contribution measures. To do this, we would need to collect
data for more metrics including code churn and coverage reports of
instructor-written tests. With these, we would be better positioned to
understand the flow of the code: where and when lines of code were
changed and who made the changes. They would provide a much richer
basis for deriving the code contribution attributes.

We need to evaluate Teamline against the TAs who are responsible
for grading student projects. We would like to see if the tool makes it
more obvious which students contribute less (and by how much) and
also if it makes the task of grading qualitatively easier. A quantitative
evaluation where the time and accuracy of grading is measured with
and without Teamline would also be appropriate. This feedback will be
critical in determining if Teamline actually solves the intended problem
and would be required if we were to refine Teamline in future iterations.

Currently, the Teamline frontend uses a static JSON file containing
metrics for all teams to obtain the data it needs for the visualization.
However, this will not work once the tool is deployed since the data
will change frequently as students make changes to their code. The
solution requires that the frontend query the grade database directly to
get the data. While the backend is set up to respond to such queries, the
frontend will require minor changes to read data from the backend’s
HTTP endpoint instead of a JSON file.

Ultimately, we would like to extend Teamline to industrial software
development teams so that it could assist with team awareness, task
allocation and change summaries. This would likely require defining
contribution based on metrics made available by version control and
testing systems.

8 CONCLUSION

In this paper we presented Teamline, a tool that visualizes contributions
to a team-based project with an emphasis on contribution uniformity. It
has been designed to assist TAs in retroactively scaling back grades of
students that contributed less than their partners. The Teamline visu-
alization consists of a heatmap overview that allows users to identify
teams with unequal contributions and to compare the overall grades
for all teams. The detail view, which can be accessed by clicking one
of the heatmap cells, shows the team’s overall grade as well as the
contribution scores of each team member. A gallery view shows users
thumbnail versions of the contribution charts to help identify interesting
contribution patterns, two of which can be selected to show in a large
juxtaposed detail view.

To create the Teamline visualization, we had to define derived met-
rics that would show team member’s contributions to the project. We
based these contribution metrics on the pass rate and coverage scores
since these are what the final grade is based on. While the contribution
metrics are a reasonable start, we believe that more robust measures of
contribution could be derived by capturing additional code metrics in
the underlying dataset.

The next step is to evaluate Teamline and collect user feedback
before starting the next design iteration. We hope that with reason-
able effort, Teamline could be deployed to TAs in future offerings of
CPSC310.

REFERENCES

[1] J. Abrahamson, I. Beschastnikh, Y. Brun, and M. D. Ernst. Shedding light
on distributed system executions. In Companion Proc. 36th International
Conf. Software Engineering, ICSE Companion, pages 598–599, New York,
NY, USA, 2014. ACM.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[3] C. Choate. Commit graph: The missing graph for
stash, 2016. [Online; accessed Mar. 1, 2017]. Available:
https://marketplace.atlassian.com/plugins/com.plugin.commitgraph.commitgraph.

6

[4] GitHub Inc. Viewing contribution activity in a repository, 2017. [Online;
accessed Mar. 5, 2017]. Available: https://help.github.com/articles/viewing-
contribution-activity-in-a-repository/.

[5] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C. Roberts.
Visual comparison for information visualization. Information Visualization,
10(4):289–309, 2011.

[6] M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for
selecting color schemes for maps. The Cartographic, p. 27–37, 2003.

[7] R. Kelly, L. Watts, and S. J. Payne. Can visualization of contributions
support fairness in collaboration?: Findings from meters in an online game.
In Proc. 19th ACM Conf. Computer-Supported Cooperative Work & Social
Computing, CSCW, pages 664–678, New York, NY, USA, 2016. ACM.

[8] T. Munzner. Visualization Analysis and Design. A K Peters Visualization
Series. CRC Press, 2014.

[9] A. Zubkov. Visualization github repositories history, 2016. [Online; ac-
cessed Mar. 5, 2017]. Available: http://ghv.artzub.com/.

7

