
FineDyne: A Tool to Browse and Compare Restaurants

Dilan Ustek and Matthew Chun

Fig. 1. The main overview of FineDyne with all settings at default. Pinned restaurants from past queries are intentionally still present.

Abstract—Deciding what and where to eat can be challenging due to the gaps in criteria known to finalize a dining decision. Current
solutions such as Yelp not only withholds information to fill in these gaps, but also presents restaurant information in a narrow fashion
that precludes more complex dining queries such as the comparison of two disparate cuisine categories. We introduce FineDyne, a
web-based tool that leverages Yelp’s own restaurant dataset and visualizes restaurant information in a much richer way. Specifically,
we present the distributions of various dining criteria categories and link this with matching restaurants on a map view. Annotation
features are implemented to allow users to save interesting restaurants of different criteria and compare them for a final more informed
dining decision.

Index Terms—dining, food, visualization

1 INTRODUCTION

It can be surprisingly difficult to decide what and where to eat. Occa-
sionally, we know exactly what we would like to eat. But it is more
often the case that we don’t have all of the necessary details to make
the most informed dining decision. Yelp is a popular online service
that provides restaurant information such as user reviews/ratings, de-
scriptions, locations, and price details to assist in this common but
important activity [8].

Yelp presents this information in a simple manner, in the form of a
top list that matches criteria such as specific price ranges and cuisine
types ordered by review rating and other metrics [12]. This list presen-
tation can be appropriate for simple queries, but it is not conducive for
slightly more complex but reasonable queries. For example, multiple
restaurants cannot be compared based on different cuisines. Users cur-
rently can achieve this by using multiple web browser tabs. But this is
not the most efficient way to compare restaurants of different cuisines

in a holistic manner. Additionally, the distributions of different cri-
teria cannot be known. As a result, users may use unpopular criteria
combinations that may lead to less fruitful dining options.

To better support these complex queries, we introduce FineDyne,
a tool which leverages Yelp’s rich dataset of restaurant information
that encourages a holistic and iterative way to compare various restau-
rants for a more informed dining decision. FineDyne achieves this
by utilizing multiple views. A criteria view shows the distributions
of various criteria such as the number of restaurants that fall under a
specific price range, review quality rating, and cuisine type. This can
be used to give users a guideline of interesting criteria that may yield
rich results. A map view is used to geographically show restaurants
of matching criteria to resolve decisions involving proximity. A com-
parison view provides an area for users to ”pin” or save any candidate
restaurants that they can use to compare against new queries. All of
these views are linked together to reflect a filtering process of finding
the best matching restaurants for a given combination of criteria.

Section 1.1 introduces the terminology used by Yelp that serves as
the components of our criteria view. Section 1.2 will describe the no-
table limitations and problems with Yelp. Section 2 provides sum-

maries of related works that were used as inspirations for our chosen
solution approach. In particular, we will describe works related to the
usage of filters, scented widgets, and a multi-label faceted querying
to encourage an iterative refinement of dining decisions. Section 3
will describe our tool’s data, tasks, and their abstractions. Section 4
contains details of our solution and its justification as seen through
the ”what, why, how” framework by Munzner [15]. Section 5 will de-
scribe the libraries used by our solution and details regarding our expe-
riences using these to implement our solution. Section 6 will address
how our solution addresses the tasks described in Section 3. Section 7
will describe what we believe to be the strengths and limitations of our
solution. Finally, Section 8 will conclude with a set of summarizing
remarks and describe possible future directions for our tool.

1.1 Domain Terminology
While Yelp provides a myriad of criteria categories [9], we will be
using the following categories based on our personal experiences and
beliefs in regards to how most individuals would approach searching
for a restaurant.

Price range will be used to differentiate restaurants on their aver-
age menu prices. Yelp defines this range in a discrete, ordered manner
based on ”price per person”. With $ being the lowest price unit, con-
sisting of under $10 per person, while the remaining 4 $ units represent
increments of 20 to 30 dollars [11].

Review quality will be used to distinguish the restaurants on their
overall quality. The review quality (stars) of a restaurant is rated by the
users of Yelp and is represented by an ordered 5 point scale, using 0.5
increments. 1 star can be taken to mean that a restaurant was not well
received by most users. On the other hand, 5 stars indicates general
excellency from the users, generally with respect to their expectations.
While numbers don’t tell the entire story, review quality can be still
useful as a guideline into assessing the general quality of a restaurant.

Yelp also provides restaurant information over 101 unique cuisine
categories. How we chose to modify and use these cuisine categories
will be discussed in Section 3.3.

1.2 Yelp Limitations
Currently, Yelp can be used effectively for simple restaurant queries
such as finding the best ranked restaurants for a specific price range or
neighborhood. But it does not fare well in answering more complex
criteria.

Yelp presents the results of a given set of criteria in a ranked list.
The restaurants on the list are ranked by their average review quality.
Higher review quality restaurants are placed toward the top of this list.
If a Yelp user desires to discover restaurants of some criteria based on
popularity, then the list representation can be appropriate. However,
the level of criteria detail given by users greatly affects the quality of
interesting results in the list. Otherwise, a more random assortment
of results can appear in the list. These results will likely be not very
meaningful. An associated flaw is that users are not given informa-
tion for better alternative criteria. Thus, it is difficult for users to know
what the promising criteria combinations are in order to find poten-
tially interesting results.

To an extent, Yelp can somewhat support the cases where users wish
to compare different cuisine categories such as Japanese or Italian. For
example, if searching for Japanese restaurants, a user can add more re-
lated cuisine categories such as ramen and sushi bars. However, it
is not possible to add disparate categories such as Italian as seen in
Figure 2. Yelp seems to operate on the assumption that only related
cuisine categories are useful to display to the user. But with this re-
striction, it is difficult to compare against other types of cuisines. This
necessitates users to start completely separate queries where the com-
parison of more diverse cuisine types must be done through external
methods. For example, users can use multiple web browser tabs for
each cuisine query, but this can be cognitively demanding.

2 RELATED WORK

The related work covers different aspects of our solution. In particular,
our solution was composed of facilitating a holistic, multi-faceted way

Fig. 2. Example of Yelp showing only related categories to original
Japanese query. Disparate cuisine categories like Italian are not avail-
able.

to iteratively find the best result through filtering.

2.1 Data Visualization Manipulation - Filters, Control Pan-
els, and Widgets

A possible approach to control the visualization of data can be done
through direct manipulation. For example, both VisExemplar [17] and
dynamic queries [18] used this approach through the use of control
panels, filters, and widgets where the users and the systems collabo-
rated incrementally until the most effective possible visualization was
created. Given the similarities in goals, we also can adapt the idea of
a control panel with various options to filter the data in different ways
until a satisfying visualization is reached.

However, given that our dataset can offer many possible types of
queries, it can be difficult for a user to know where to begin their ex-
ploration process. Thus, it would be beneficial to guide users in this
process, to know what might be interesting avenues of exploration.

2.2 Giving a start point for data exploration - Scented Wid-
gets

Scented widgets [19] are visual navigation cues that can aid users in
guiding and refining their exploration of a large dataset. For example,
these cues can visually take the form of radio buttons with comments
counts, or a slider with a histogram overlaid to show a distribution of
the dataset, which can provide a perception of the cost and value of go-
ing down some path of information. In terms of our design, providing
cues such as the distribution of popular restaurants split by different
cuisine types could prove useful for users looking for a starting point
for their restaurant decision making.

One issue with scented widgets, is that it may encourage users to
search for mainly the more interesting or popular items in a dataset.
While this is not a bad thing, this would undermine a more exploratory
search process. Thus, an alternative approach would be to organize
information into various different dimensions (facets) which can give
the user a multiple angle approach to explore datasets without entering
explicit search queries [13].

2.3 Presenting the data in a holistic manner - Multiple
Facets

Flamenco [14] is one such example of a faceted search interface for
images, that utilized multiple label querying to search for a specific
subset of the larger facet space. For example, a facet may be food in-
gredients which could have the labels vegetables, breads, etc. Besides
used as a querying method, Flamenco also had the notion of a query
breadcrumb to help anchor users to their initial search criteria. This
could especially be helpful in situations where many types of search
queries may be employed, which could be useful for our design for

helping users understand what elements of their query led to their final
result.

2.4 Filter and Focus - Subset on Distributions

It is likely that as users go about their dining decision process that they
would need to filter and focus down to a particular subset of restau-
rants to compare. Vis-A-Ware [16] is a system for urban planning
that allowed users to compare multiple candidate buildings on various
visual occlusion types upon a citys landscape through a combination
of a coordinated map view and table of histograms. The histograms
denoted different distributions of these occlusion types for each can-
didate building or a particular real-life viewpoint. The users were
encouraged to focus onto a certain subset of these distributions and
filter onto them to see a smaller but specific set of candidate build-
ings/viewpoints that could be more readily inspected in the map. Thus
for our design, we can encourage similar behavior by showing vari-
ous criteria categories that restaurants could be viewed upon but offer
mechanisms for refining the overall candidates to a smaller selection
for easier comparison.

3 DATA AND TASK ABSTRACTIONS

The data and tasks used are related to the domain of using the Yelp
service to find a restaurant for dining. We performed abstractions on
both of these such that they could be analyzed more simply to help
guide us to our final design solution.

3.1 Data Source

The data used for this project was provided by Yelp through their
dataset challenge. The challenge encouraged developers to find new
ways to use the data to help answer interesting domain questions [10].
Past example usages of this dataset have involved discovering cultural
trends: Do Americans tend to eat out later than Germans? Does a
restaurants popularity really have to do with their location? Is a Chi-
nese restaurant also really Szechuan or Hunan style? Multiple datasets
such as those with user restaurant check-in details, restaurant reviews,
restaurant tips, and user reviews were provided. We take a more end-
user approach with these datasets.

3.2 Data Domain

Based on Section 1.1’s domain criteria, we used the provided restau-
rant review dataset. After converting the dataset from the default JSON
format to a CSV format using the provided conversion python script,
we found that the data contained the following in a table format:

• Restaurant names

• Location information for each restaurant eg. longitude/latitude,
address, neighborhood

• Array of all associated cuisine categories of a restaurant

• Array of all extra meta information eg. Alcohol serving status,
Credit Card acceptance, price range, etc.

• Operating Hours

• Unique business ID

• City of operation eg. Edinburgh (UK), Toronto (Canada), etc.

From the cities provided, we chose to focus on Toronto out of patri-
otic interest, where we looked at all rows of the dataset pertaining to
the review quality and price range of a given restaurant. More details
regarding the 101 unique cuisines and the 2203 restaurants identified
in the dataset and how we aggregated them for our solution will be
discussed in the next section.

3.3 Data Abstraction
We retained the data table format but simplified it for our solution
requirements. In particular, our data table had the following:

• Each row represented a single restaurant (categorical) with an
associated column for restaurant names

• Columns for price range and review quality (ordered)

• Columns for location information eg. longitude/latitude (quan-
titative), address (categorical), postal code (categorical), neigh-
borhood (categorical)

• Column for unique business ID (categorical) for later data clean-
ing of duplicate entries

• Column for cuisine type of each restaurant (categorical)

101 unique cuisine categories were identified in the dataset. For
the purposes of scalability with our final idioms, the cuisine categories
had to be aggregated. What these idioms entailed will be discussed
in Section 5. Many of the cuisines were ”binned” to more generic
but representative cuisine types. For example, the aggregated cuisine
”Southeast Asian” would include individual cuisines such as Thai,
Vietnamese, and Filipino. Generally speaking, we used the heuris-
tic of geographic/semantic familiarity with the aggregated cuisine cat-
egories, where the goal was to identify if the aggregation could be
used in place of a specific cuisine type in question. Occasionally,
some cuisines were standalone such as ”Gluten-Free” to cover special
edge cases of notable distinctiveness that would be lost in aggrega-
tion. While this approach assisted in scalability, there were notable
trade-offs. These will be discussed in Section 7. Please refer to Table
1 and 2 to see how we aggregated all of the Yelp cuisines.

Table 1: All aggregated cuisines and their individual cuisine categories
that compose them. Aggregated cuisines are on the left side.

Aggregated Cuisine Table
African African, Ethiopian,

South African
American American (New),

American (Tradi-
tional), Canadian
(New), Hawaiian,
Tex-Mex, Steakhouses,
Burgers

Barbeque Barbeque, Southern
Breakfast/Brunch/Comfort Diners, Soul Food,

Comfort Food, Break-
fast & Brunch

Fast Food Fast Food, Hot Dogs
Bars & Pubs Chicken Wings, Bars,

Beer, Beer Bar, Dive
Bars, Pubs, Sports
Bars, Tapas Bars, Wine
& Spirits, Wine Bars,
Poutineries

Sandwiches/Soup Cheesesteaks, Sand-
wiches, Soup

Bakeries Bakeries, Donuts,
Bagels

Latin American Brazilian, Ca-
jun&Creole,
Caribbean, Colom-
bian, Cuban, Latin
American, Peruvian,
Salvadoran, Mexican

Dessert Creperies, Desserts, Ice
cream & Frozen Yogurt

British/Irish British, Fish & Chips,
Irish

Central European Czech, German, Polish,
Hungarian

Eastern European Ukrainian, Russian
Mediterranean Greek, Iberian, Span-

ish, Mediterranean,
Moroccan, Portuguese

Coffee & Tea Cafes, Coffee & Tea,
Tea Rooms

Southeast Asian Indian, Hi-
malayan/Nepalese,
Sri Lankan, Pakistani

Chinese Chinese, Dim Sum, Hot
Pot, Taiwanese

Table 2: All aggregated cuisines and their individual cuisine categories that com-
pose them. Aggregated cuisines are on the left side. Cont.

Aggregated Cuisine Table Cont.
Middle Eastern Middle Eastern, Don-

airs, Falafel, Lebanese,
Persian/Iranian, Turk-
ish

Gluten-Free Gluten-Free
Vegetarian/Vegan Vegetarian, Vegan
Halal/Kosher Halal, Kosher
French/Belgian French, Belgian, Fon-

due
Italian Italian, Pizza
Japanese/Korean Japanese, Ramen,

Sushi Bar, Korean
Seafood Seafood
Buffets Buffets
Asian Fusion Asian Fusion

3.4 Task Domain
To represent the possible tasks that our tool can support, we present the
following task examples of fictional users to represent the variety of
requirements that our tool should accommodate. These examples were
formulated from the designers and their own usage walkthroughs
of the current Yelp website and the issues that were discovered.

Katie the birthday planner - Katie wants to plan her best friend’s
birthday with some of their closest friends invited. She knows
for sure that her best friend is a huge Japanese fan but the other
friends are more keen are Mexican. While these are important,
it’s also important to find a place that has great after party options
nearby, such as a bar. Given that this is a special occasion, Katie
is willing to spend more, upwards of a 45 dollars budget per per-
son given that the restaurant is of higher quality (4 stars and up).

Analysis - The above task example is a case where the individ-
ual knows all of the criteria. It’s simply a matter of finding the set
of restaurants that best fits these requirements. For Katie to achieve
this task currently, it is entirely possible to do it within the current
Yelp website. She must look up separate queries for each interested
restaurant type and use the price range filter. A caveat is that she must
keep track of the bar locations with each possible Japanese or Mexican
place that she is considering, which through a web browser would
necessitate switching tabs or using multiple windows for comparison.

Andy the company party planner - Andy is the engineering manager of
a mid-sized company in downtown Toronto. It is his responsibility to
plan a project launch party for his team after work. He wants the party
location to be at a restaurant close to the office, and especially would
like great dessert options nearby (a cake is necessary for a celebration
after all). In terms of the main course meal, he is much more flexible
on this, as long as it’s a reasonable price for the company to reimburse.

Analysis - This task example is a situation where only some of the
criteria are known, but in a very loose manner. For Andy to achieve
this using the current Yelp website would be a challenge. In Andy’s
case, he needs to be able to see nearby dessert places and a general
set of ”good” restaurants. The narrow focused searching of Yelp is
a hindrance, Andy would have to first look up dessert places, then
do a separate search for generally good restaurants nearby the office.
Looking for a good restaurant may take him a bit longer, as he only
has price as a general constraint. It wouldn’t be possible for him to
gauge the cuisine options nearby that might fall under a specific price
range. If he could then this can be advantageous in that he can see if
many restaurants nearby are of a specific cuisine, then it is likely that
a specific popular cuisine maybe the ”safe” choice to use for the party.

Sally the tourist - Sally is a tourist that is new to Toronto. She

has a list of some notable neighborhoods that she would like
to visit in her limited time. She is very keen on finding the
higher quality restaurants with no limits on the types of food they
serve. She simply wants the best of each place that she will visit.

Analysis - This task example has the least amount of limits on
the criteria required for a restaurant. Similarly to Andy’s case to
find simply ”good” restaurants, Yelp will present Sally with a list of
highly reviewed restaurants in some ranked order even when no price
range is specified. But there is no way for Sally to know the exact
distribution of restaurants of different cuisines that also qualify as
highly rated. Yelp’s ranking algorithm would ”hide” this distribution
which would lead to a lesser informed dining decision. For example,
if Sally could see that one of her neighborhoods was dominant in
offering high quality Indian food versus that of Thai food, she maybe
more inclined to go with one rather than the other.

3.5 Task Abstraction
For all 3 of our task examples, all of the users wish to discover a set of
restaurants that matches their specific criteria. The level of specificity
in the criteria differed among all 3 examples, where some aspects such
as cuisine or price range was known, but the resulting target restaurants
were not known. Thus, all 3 individuals would have to browse for
qualifying restaurants that matched their requirements.

Many of the task examples placed constraints on finding nearby
restaurants in addition to the main ones to be found. Thus, the ability to
compare restaurants based on a specific criteria is important to support.

Finally, it was implied that being able to see an overview of distri-
butions may have led to more informed dining decisions in the cases
of Andy and Sally. There is something to be said in seeing the number
of restaurants that meet a requirement. Similar to how Yelp currently
offers seeing the number of reviews in addition to the average review
quality, being able to see the distribution of criteria categories such as
price range, and cuisine type could be very informative for these users.

4 SOLUTION

In Figure 1, we present FineDyne, which is composed of 3 main views
that are linked together to support an iterative and holistic dining de-
cision making process. In the very centre of the interface, is the map
view that will be the main area where criteria matching restaurants
will be populated. On the right of the map view is an associated list
of matching results that is tied to the view. Any restaurants that match
the current criteria and is located in the current map region will be dis-
played in this list. The purpose of this list is to support quick scanning
of criteria results in situations where many restaurant markers overlap.

The criteria view on the left side of Figure 1 is used to begin the
search process. A series of barcharts are used to represent what we be-
lieve to be the most useful Yelp criteria. The criteria involved review
quality (stars), the associated cuisine type based on our aggregation,
and the price range of a restaurant ($ sign). The purpose of this view
is to give users a sense of where to begin their search process by pro-
viding the distributions of these criteria categories, which could give
hints of what the most promising criteria combinations could be in or-
der to find their final restaurant. The individual bars of these charts can
be selected through a click, which would filter the map views results
based on the selected bars of interest. To support an iterative decision
making process, these bars can be freely toggled on/off to change the
resulting map view results at any time as seen in Figure 3 and Figure
4.

Selected bars would be saturated while de-selected bars would be
de-saturated. To support tasks involving location based decisions eg.
Which restaurant is closer to X, the criteria view changes its distribu-
tion in accordance with the current zoom level of the map view.

Early in our design process, alternative ways to filter results were
considered. Our initial approach in criteria selection was quite simple.
A series of checkboxes were used to select the desired price, review
quality, and cuisine choices, with the results then presented on the map
view and another chart area. In this chart area, matching restaurants
would be positioned along the axes of price and review quality. The

Fig. 3. Criteria view barcharts can be freely toggled on/off to select
specific subsets of criteria areas of interest. All bars are selected in this
example.

restaurants would be shown in cards to indicate how different cuisine
restaurants stood relative to each other along these axes as seen in
Figure 5. But due to the lack of scalability to accommodate a high
number of results, this approach was quickly discounted.

Another early design consideration for the criteria view utilized a
4x5 matrix grid. Rows represented the 4 price range categories, and
the columns represented the 5 star review quality units. Each element
or a range of elements of this matrix could be toggled on/off to ac-
commodate a combination of different price/quality criteria eg. ”4 star
restaurants in a $$ and $$$ range”. Please refer to Figure 6 to see
this in action. The flaw with this approach was that it obscured the
promise of a potential criteria combination, where the results may not
be very fruitful. In other words, users should be able to know before-
hand whether a particular criteria combination would be interesting to
embark upon, in order to not waste their time

As in seen in Figure 7, a stacked barchart view was considered at
one point to display the proportion of review quality stars for each
cuisine category for our criteria view. The stacks were thought to serve
as a good quick way to gauge the quality distribution of a single cuisine
type in question. However, due to price category information unable
to be coded, we decided that using separate barcharts to represent the
criteria categories were more appropriate. Breadcrumbing was also
planned initially, but this was discarded as the selected bars in the
current criteria view served a similar purpose.

As mentioned previously, the map views role is to display the results
of the criteria selected in the criteria view. Markers represented as blue
balloon glyphs are used to indicate the appropriate criteria matching
restaurants. Clicking or hovering over the marker will show a pop-up
window (detail on demand) with summarized restaurant information
such as a 1 liner review, an image, and price/review quality. This in-
formation can be used to judge if the restaurant should be pinned to
the comparison view area for later consideration. The pinned restau-
rants are represented as physical red pins to visually distinguish them-
selves from the remaining markers on the map. In practice, we found
this to serve their purpose of being distinct and easy to find due to

Fig. 4. Criteria view barcharts can be freely toggled on/off to select spe-
cific subsets of criteria areas of interest. Only some bars are selected
while the remaining are deselected in this example.

the lighter hues used by the map implementation. Our map imple-
mentation provided a way to aggregate markers based on the current
zoom level of the map. We felt the aggregation was appropriate as
the unique markers from the aggregated clusters would only be visi-
ble at the closest zoom level. This was appropriate, as this was where
users would likely be performing any proximity decisions. Secondly,
the aggregation was useful to quickly get an overview of areas to find
matching criteria restaurants. Please refer to Figure 8 for an overview
of the map view. In cases where large amounts of restaurant markers
would appear on the map view, we created a list that displays all of
the restaurants in the current map region in an easy to read table. The
table’s row contained the restaurant entry, with the columns containing
criteria category information such as restaurant name, price range, re-
view quality stars, and cuisine category. Each of these columns could
be sorted by ascending/descending order to quickly find and compare
restaurants on a specific criteria category.

The comparison view is located on the bottom of the map view, and
is dedicated towards the displaying of pinned restaurants. A ”pinned”
restaurant denotes a potentially interesting restaurant that a user would
like to use later for more final dining comparisons. Pinned restau-
rants persist across different sessions of using FineDyne, even when
users decide to investigate different criteria combinations. Thus, this
supports an iterative decision making process, where users gradually
compile a list of candidate restaurants for a more holistic dining deci-
sion at the end. Hovering over the pinned restaurant will link highlight
the associated map marker in red. This was done in order to support
tasks involving proximity among the pinned restaurants. Please refer
to Figure 9 for an example. We decided to place the comparison view
on the bottom of the map view in order to encourage its importance.
It is very literally at the centre of the user’s visual attention, which
should make it salient for the more important comparison tasks later
on.

Fig. 5. Early design consideration for criteria view. Matching restaurants
are shown in cards relative to each other along different criteria.

Fig. 6. Early design consideration for criteria view. Specific grid ele-
ments can be selected to investigate specific criteria ranges.

5 IMPLEMENTATION

5.1 Data Parsing

With over 2203 restaurants that often repeated themselves for each of
the 101 unique cuisine types recognized, the restaurant review dataset
had to be parsed down into our interested criteria information. This
was achieved through a combination of R [6] and Trifacta Wrangler
[7]. Both of these tools were suitable for manipulating tabular data.

R was used to breakup the massive restaurant review dataset into
just the entries related to Toronto. This was achieved by using the
R library package data.table which allowed for SQL-like queries. A
query was made to extract just the rows that specified a restaurant was
from Toronto versus another city in the dataset. The Toronto entries
were then saved to a single CSV.

The next step was to discover the unique cuisine types of Toronto.
Annoyingly, the original format of the dataset compiled all possible
cuisine types for a restaurant into an array entry. This was likely due to
the possibility of having a restaurant fall under multiple cuisine types
eg. Japanese and Korean, Indian and Pakistani, etc. Trifacta Wrangler
was used to break the main categories column of the dataset, that held
these cuisine arrays, into split columns that contained a single cui-
sine category each. The splitting itself was achieved through a built-in
function called ”split” that would split a column based on a provided
string pattern such as comma in our case. Once the split columns ex-
isted, R could now be used to count all unique instances of each cuisine
type mentioned in each of the split category columns. Rs built-in ta-
ble functions worked well to give a summary output of unique cuisine
types. We used this information to inform the final set of aggregated

Fig. 7. Early design consideration for criteria view. Can select subset of
criteria ranges to investigate.

Fig. 8. The map view in action. Here we demonstrate pinning and the
summary list view corresponding to the current region of interest.

cuisine categories.
With the cuisine categories now known, we had to then create sepa-

rate CSV files that contained just the restaurant entries that pertained to
a specific cuisine such as Japanese. To do this, first R and the data.table
package was used to set a key on each category split column, to look
for the cuisine type in question along it.

R’s data.table package was used to set a ”key” on each split cate-
gory column. All found entries that matched the current key value (eg.
Japanese) for the split column was then added to a R vector. Then it
was a matter of writing each vector into their own CSV files. These
separate CSV files represented all of the found cuisine entries for a
specific cuisine type in Toronto. Trifacta Wrangler was then used
to import all of these CSV files, and union them. Again, Yelp had
annoyingly hid the required price category information into an array
that contained a dump of meta-restaurant information such as credit
card friendliness, etc. Trifacta Wrangler’s split function was used to
segregate the price range information into its own column based on a
specific string pattern (eg. ”RestaurantsPriceRange2:”). Rows of the
dataset that were missing information such as location were dropped.
We also dropped columns that represented extraneous data from the
arrays that were split. Other minor actions involved rearranging the
order of columns for readability purposes.

This process of creating cuisine specific CSV files took about 6
minutes for each of the 101 cuisine types. The process was semi-
automated via 2 scripts, one for R, and the other for Trifacta Wrangler.

To create the aggregated cuisine CSV files, Trifacta Wranglers
union function was again used. When all of the CSV files required
were created, it was a simple matter of running Trifacta Wranglers
union function on all of the aggregated cuisine CSV files. In this fi-
nal CSV file, we also removed any non-active businesses to simplify
the size of the CSV file to account for possible performance issues.
We also removed duplicate entries based on the unique business ID
described. Duplicates occurred due to our new formatting of having
a restaurant of a specific cuisine type to be its own row, as we re-
moved the multiple tagging array of cuisines that the original dataset
employed.

Fig. 9. An example of compare view demonstrating linked highlighting
with pinned restaurants. Highlighting is shown in red on the map view.

5.2 Tools for Front-End
FineDyne is implemented using a combination of different web-based
tools. The front end was developed using dc.js [3], a JavaScript li-
brary that utilizes d3.js [2] in order to render a variety of large multi-
dimensional charts in a CSS-friendly SVG format. The charts them-
selves are driven by the provided data and is very reactive, making it
appropriate for facilitating the interaction of FineDyne.

Another important benefit of using dc.js was its compatibility with
Crossfilter [1], a JavaScript library that supports coordinated views
with huge datasets. It manages to achieve a very quick performance
(30ms) with large datasets due to its usage of incremental filtering
and reducing approaches to these sorts of datasets. The map view
of the tool was implemented using dc.leaflet [4], a variant of Leaflet
[5] designed to work with dc.js and allows for interactive map usage.
Dc.leaflet allowed for dc.js charts to be linked to the maps rendered by
Leaflet.

5.3 FineDyne Components
We loaded the data using the d3.csv function which also contained
references to the drawmarkerselect function, which was used to ren-
der the necessary views (refer to web/js/fdComponents.js for more de-
tails).

FineDyne’s views were rendered by loading our aggregated dataset
using the d3.csv function. The actual rendering of the views was per-
formed through the ”drawmarkerselect” function. This function was
called at the same time our data was loaded. Please refer to the project
source code at web/js/fdComponents.js for more details.

We implemented the price range and star quality distributions
with dc.barChart and the category types were represented with
dc.rowChart. The map was a dc-leaflet.markerChart. The markers
themselves are displayed in accordance to a named restaurants lati-
tude and longitude information via a location accessor function pro-
vided through dc.leaflet.js. The list view was a dc.dataTable. These
components were all linked by using the same Crossfilter.

The dc.BarChart and dc.rowChart components were used to imple-

ment our price range and review quality distributions for the criteria
view. The map view composed of a dc-leaflet.markerChart object.
The map view’s markers were displayed in accordance to a named
restaurant’s latitude and longitude information. This location informa-
tion was obtained through an dc.leaflet.js accessor function. The map
view’s list was a dc.dataTable object. The information shared among
these different views was achieved by using Crossfilter.

By providing different dimensions to the same Crossfilter, charts
can be efficiently linked together, filtering and showing the same data,
but grouping them in different ways. For example, the star bar chart,
and the price bar chart show the same restaurants, but they group they
using different ”dimensions”: one uses stars as the dimension, the
other uses price range.

Charts can be efficiently linked together by filtering and showing
the same data across different charts. This can be achieved by provid-
ing different dimensions to the same Crossfilter object. For example,
the review quality and price range barchart can show the same restau-
rants, but they ”group” the restaurants through different dimensions.
While the review quality barchart provides ”stars” as one dimension,
the price range barchart uses ”price range”. Reduce functions from the
Crossfilter library are used to form an individual bar’s height in any of
our barcharts. For example, the reduce functions count the records of
each matching cuisine type in order to compose an ”aggregated” group
that will act as the individual bar.

Dc.js makes it easy to create charts out-of-box by giving it the nec-
essary options and parameters. Charts can be customized to have cer-
tain properties such as ”elastic” x or y axes that can rescale themselves
depending on the range of the data, certain label formats, and cluster-
ing of data in the dc.leaflet.js map object.

Using Jquery, we provided users with extra options such as making
the map view’s list columns sortable when a user clicks on the column
labels. We used d3.js to customize the charts even further by setting
color palettes, ordering sorted data, and implementing the pagination
of the list view.

5.4 Pinning
The compare view of FineDyne contained interesting challenges. A
core design idea of ours was to allow users to be able to pin restaurants
of interest in order to compare them later. However, there was no dc.js
chart that could accomplish this feat. Despite the simple idea, this
was not trivial to implement as not only should users be able to pin
and unpin restaurants from the map, but the same actions had to be
allowed from the map view’s list as well.

The list view was generated by dc.js automatically using the same
Crossfilter as other charts. This meant that we needed to generate each
row in the table with an JavaScript onclick function. When clicked,
this would send the function handling the clicked restaurant’s data to
a function that would deal with pinning. Additionally, the map view’s
pop-up windows were generated and binded to each marker element
individually on load, and needed to call the same pinning function
when a user pinned a restaurant from the map view’s pop-up window.

Users can ”pin” a restaurant by clicking on the row in the map
view’s list or by clicking the ”Pin/Unpin” button on its pop-up win-
dow. The function for pinning, called ”togglePin” takes the businessId
of a restaurant, and keeps track of pinned restaurants using an object
data structure. A pin icon appears on the row that corresponds to the
restaurant on the list view when a restaurant is pinned and it disappears
when it is unpinned.

5.5 Linked Highlighting
Another important contribution of our tool is that users can compare
the proximity of different pinned restaurants. The easiest way to do
this is to highlight the location of a pinned restaurant when a user hov-
ers over it on the map view’s list or from the compare view. However,
as we generate the markers on load, when users hover on the list view,
it is hard to change anything about the marker. To make it work, we
would need new instances of the marker in blue for the default look,
and in red for the hovered look which would cause memory perfor-
mance issues.

To avoid memory issues, we created a function that would create
a red version of the blue map marker that would be inserted on the
markerchart object at the exact location of the original blue marker.
This function would be called when the map view’s list element or
compare view’s element was hovered upon. The end effect is that
when users hover over a certain pinned restaurant item, there is an
impression that the marker is red to highlight its location on the map
view. When the user clicks on the list restaurant item, they pin the
restaurant onto the map via a red pin on top of the marker. This acts
as confirmation of a successful pinning action. Even when users are
no longer actively hovering over the pinned restaurant list element, the
pin will persist on the list to indicate pinning is still active as well.

5.6 Disadvantages of dc.js
As we mentioned above, there are many advantages of using dc.js
since it provides optimized out-of-the-box interactive charts. How-
ever, it is important to note the disadvantages in using such a powerful
library.

The main disadvantage we experienced was that dc.js makes it hard
for the developer to manipulate and customize the low level details
of the charts. The developer needs to know a lot of the syntax and
capabilities of such a library in order to use them well. As a simple
example, a row chart in dc.js does not have a function for labeling axes.
Adding this is not as simple as the lower level and more developed
library, d3.js. For this case, we needed to write a function (addXLabel)
to manually insert a x-label to the categories chart.

6 RESULTS

In this section, we will present how FineDyne can be used for each
of the user types and their task examples described in Section 3.4.
Specifically, we will describe how FineDyne can accommodate differ-
ent levels of restaurant discovery based on the level of detailed criteria
a user possesses.

6.1 Usage Scenario: Katie the birthday planner
Katie, who needs to plan a birthday party, opens up the new FineDyne
website. After the website loads, she first looks to the barcharts that
shows the distributions of her desired criteria . Since she is interested
in only comparing Japanese and Mexican places, she selects them to be
the main filters by clicking on them in the cuisine category barcharts.
The website then updates by showing the distribution of Japanese and
Mexican restaurants on the map, which ends up removing quite a bit
of the restaurant markers.

Next, since she has a 45 dollar budget and would like generally high
quality restaurants, she clicks on the 3 dollar sign price range bar in
the price barchart, which covers 31 to 60 dollars per person, She also
clicks on bars representing 4 stars, as she desires a high quality range
of restaurants to view. The map again updates accordingly, reducing
the number of markers down further.

In terms of location, somewhere fun is important, so she decides to
zoom in on the map to the main Downtown area. From her previous
actions, she can see quite a few possible options at this point. She sees
from the summary list on the right of the map, that her current chosen
area shows Yuzu No Hana and Los Colibris, both great Japanese and
Mexican places that she has heard good things about from her sister.
She decides to pin both of them for later consideration.

But her main constraint to solve now is to find a good bar nearby
for a decent after party. She goes back to the cuisine category barchart,
and deselects the Japanese and Mexican options by clicking on them.
She then selects the Bars option by clicking on it. The map updates
accordingly, and she can see in her current zoom level on the map, that
a couple of bars appear. Using the summary list again, she can see a
decent bar called Shangri-La.

But she wants to now compare the bar in relation to her previously
pinned restaurants, where she will pick the restaurant based on its
proximity to the bar, as she would like to minimize commute time
to have more time for the partying. She hovers her mouse cursor over
the pinned restaurants on the bottom of the map, and can see them
linked back to the map in the form of red markers. She sees that Yuzu

No Hana is closer to the bar, and decides to use it for the main dinner.
She jots down the name of the restaurant and bar for reservation later.
Please refer to Figure 10 to see Katie’s actions using FineDyne.

Fig. 10. Katie planning a birthday. She makes the final decision based
on the Japanese restaurants with closer proximity to the Shangri-La bar
(linked highlighting in red).

6.2 Usage Scenario: Andy the company planner

Andy, who is responsible for planning his company party, opens up the
FineDyne website. Since his only hard constraint is to find a decent
dessert place near his office, he first selects the Desserts cuisine cate-
gory bar in the cuisine category charts. The map then updates with the
matching results. He then zooms in to his office location on the map
to see the matching dessert places nearby the office. From the sum-
mary list near the map, he can see quite a few dessert places nearby.
As quality is important, Andy selects the 4 star and up bars in the re-
view quality chart to filter out the matching dessert places. He sees a
promising one on the summary list, and decides to pin it for the basis
of the next step.

The next step now involves finding a restaurant to host the main
dinner. Unlike the dessert place, Andy is much more flexible in terms
of review quality, as price is the bigger concern. He selects the medium
2 dollar price range in the price chart, which updates the review quality
chart distribution. He can see that there is a 5 star restaurant for the
chosen price range and decides that this will be the place to host the
dinner. He selects the 5 star bar to filter out the other non-relevant
quality options. Hovering over the matching marker reveals that the
restaurant is of reputable quality based on the 1-liner review. Andy
thus decides to host the dinner at this restaurant.

6.3 Usage Scenario: Sally the tourist

Sally is a tourist new to Toronto. In her hotel room, she decides to do
some research on finding the best restaurants for each of the neighbor-
hoods that she plans to visit. She opens up her laptop and points her
web browser to the FineDyne website.

Since Sally is keen on finding the higher quality places with no
particular constraints on the types of food they serve (she is quite open
minded), she decides to select 4 stars and up in the review quality
chart. She leaves the price ranges at their default selection of all, as
shes does not want to lose out on potentially interesting restaurants due
to pricing concerns. She also leaves the cuisine chart alone, by leaving
all of the cuisine options active for similar reasons. She doe not know
what type of restaurant will be considered the best after all.

Knowing that the map is now only showing the higher quality
restaurants across all cuisine types in Toronto, she scrolls the map to-
wards the different areas that she will be visiting. The first area she
plans to visit is near Exhibition Place, so she zooms in the map to the
region. The cuisine category chart updates accordingly in their distri-
butions.

Sally can now see that Bars & Pubs seems to dominate the area
which is rather unfortunate as she can get these places back home. But
she does notice that a second larger portion of Breakfast places are also
high in the area which could lead to promising results. African food
also appears in this area, although it is nowhere as dominant. However
due to the review quality filters being active, she trusts that some of
these African places might also be interesting to check out.

With these 2 categories standing out, she selects to be the focus
of investigation by clicking on them in the cuisine category chart, with
the other cuisines deselected as they are no longer of interest. The map
then updates with markers representing both of these cuisine types.
She sees both a breakfast place and an African restaurant both nearby
to each other, which might make it handy to check out both places in
quick succession. She jots down the names of both places to visit them
later. Please refer to Figure 11 for viewing Sally’s decision making
process.

Fig. 11. Sally notices that African and Breakfast places are popular in
her current region of interest. She selects them to filter and find match-
ing restaurants to visit.

7 DISCUSSION

As the above scenarios have demonstrated, FineDyne can be used to
support restaurant discovery no matter the level of criteria details a
user may have as they begin the dining decision process. In particular,
FineDyne supports an iterative way to refine search criteria, where it
is simple to change criteria constraints at any time. Or in cases where
it is not clear where one should start their decision process, the charts
shown in the criteria view give hints of promising criteria combina-
tions by providing a holistic way of seeing how various distributions
can change. All of this combines in a way that can greatly improve
over the current Yelp website.

However, there are several limitations to FineDyne ranging from
technical to design issues. The most notable design issue was the
saliency of our final chosen aggregated cuisine categories. Aggre-
gation had to be performed for scalability with our chosen idiom of
barcharts. However, this maybe confusing for users. For example, if
a user were to find out which cuisine category contained Vietnamese

food, would they look in Southeast Asian or South Asian? In other
words, the transparency of a specific unique category may not align
with our chosen aggregations. A solution to this may involve either
nested cuisine categories (Figure 12) or simply having a preferences
panel that defines the final number of unique cuisine types shown in
the criteria view (Figure 13). Either solution would reveal the true
location of a specific cuisine category.

Fig. 12. Nested cuisine category example based on Southeast Asian
cuisine. Size of proportions indicate the dominance of a particular cui-
sine within an aggregated cuisine category. Different luminance levels
were used to distinguish the different cuisines inside the aggregation.

Fig. 13. Simple preferences panel. Based on old original design, where
a slider was considered to filter restaurants based on total number of
reviews as well.

Along similar lines, there were encoding limitations due to the large
number of cuisine categories shown, even after our aggregation. Be-
cause colour hue was used as the main form of encoding, we simply
did not have enough distinct hues nor luminance levels to visually dis-
tinguish all of the cuisine categories. Some cuisine groups with similar
hues may be confused to be similar to one another as a result. Using
the preferences panel from above may also be a way to get around this
issue in order to avoid having hues repeat themselves.

There were also encoding issues in the map view of FineDyne
where the default map marker icons (blue balloons) of Leaflet were
used. We ran out of time to investigate how to modify the markers
to represent other types of cuisine categories. This would have been
useful to more quickly identify what types of restaurants the mark-
ers were representing. However, another encoding issue here would
have emerged, where using different colour hues would not have been
enough to distinguish the various cuisine types due to the issue of re-
peating colour hues mentioned. A solution to this would be to employ
unique glyphs such as sushi or pizza icons to represent iconic imagery
of cuisines such as Japanese and Italian respectively. However, coming
up with recognizable glyphs that is understandable for a diverse audi-

ence with different cultural backgrounds would be a challenge onto
itself.

In terms of usability issues, the number of pinned restaurants would
have necessitated users to scroll down their web browser to see the
later pinned options. This would not only be frustrating, but the ad-
vantage of the linked highlighting of the pinned restaurants would be
rendered useless, as users could no longer see the map view of the
highlighted markers. A solution might be to redesign the candidate
view with pagination to select different pages of candidate restaurants.
Along similar lines, the large number of cuisine categories also forced
users to scroll down their webpages to see the various cuisine cate-
gories for selection. Here, rearranging the rowchart perspective into a
horizontal barchart may have been more wise to minimize scrolling.

In terms of technical issues, the map view and its current zoom
level and the way in which it controlled the summary list of restaurants
on the right could not be adjusted. Thus, there were cases where the
designers had difficulty in rendering the right list of restaurants even
when a similar zoom level was used. This is a side effect of using a out
of the box solution like Leaflet, when a customized option may have
been more controllable.

For our data parsing, we performed a final duplication removal step
on the aggregated dataset. This did have a side effect, in that some
restaurants of various cuisine types maybe classified as the first pri-
mary cuisine type found in the dataset (first category in the array).
While this may lose the original identity of some restaurants, we per-
formed this last step for potential performance saving reasons. In the
future, it should be investigated how we can accommodate a restaurant
under multiple cuisine types.

8 CONCLUSION

FineDyne provides an effective way to discover a restaurant that sat-
isfies different levels of criteria knowledge through an iterative and
holistic approach. This is achieved through 3 different views that are
linked together. The criteria view allows users to see a distribution
of all of the possible restaurants in a city and their associated price,
review quality, and cuisine types which can be filtered in accordance
with a criteria. The distributions are also updated with a users other
known criteria inputs such as their desired location to eat, or specific
price ranges theyre willing to spend. The map view provides the main
way to see the criteria matching restaurants which can also be used to
make decisions regarding spatial distances. Hovering over the restau-
rant markers in this view shows pop-up information such as the restau-
rants name, photo, and 1-liner review that could be used as the basis
for pinning, a method to save a potential restaurant of interest for later
consideration. A summary list was also implemented in order to allow
users to quickly identify restaurants of interest rather than having them
manually hover over restaurant markers of which many may exist. The
lists columns for the various restaurant information such as price and
review quality could be sorted by ascending/descending order as well.
In order for users to make a final dining decision, the compare view
was made where pinned restaurants from the map view could be rep-
resented as summary cards. Users were free to pin as many restaurants
as they needed, which at the end could be used to compare candidate
restaurants from a variety of different possible dining criteria. The
cards could be hovered over as well in order to see the linked restaurant
back on the map view to identify candidate restaurants for proximity
based decisions. Combining the usage of these views, is what made
FineDyne an effective way to make the most informed dining decision
possible.

In the future, we wish to take FineDyne further by incorporating
other city datasets (Vancouver) as well as improve upon the limita-
tions we have described. Suggestions from colleagues have also sug-
gested using the live Yelp API such that the data reflected by FineDyne
would be reflective of current real life data. It would also be interest-
ing to consider how mobile devices would interact with the informa-
tion found with FineDyne, as it is common that users tend to look for
places to eat while on the go.

ACKNOWLEDGMENTS

The authors wish to thank Tamara Munzner for her helpful suggestions
and feedback throughout the project process.

REFERENCES

[1] Crossfilter. http://square.github.io/crossfilter/. On-
line; accessed 28 April 2017.

[2] d3.js. https://d3js.org/. Online; accessed 28 April 2017.
[3] dc.js. https://dc-js.github.io/dc.js/. Online; accessed 28

April 2017.
[4] dc.leaflet. https://www.npmjs.com/package/dc.leaflet.

Online; accessed 28 April 2017.
[5] leaflet. http://leafletjs.com/. Online; accessed 28 April 2017.
[6] R. https://www.r-project.org/about.html. Online; ac-

cessed 28 April 2017.
[7] Trifacta Wrangler. https://www.trifacta.com/products/

wrangler/. Online; accessed 28 April 2017.
[8] Yelp. https://www.yelp.com/vancouver. Online; accessed 28

April 2017.
[9] Yelp Cuisine Categories. https://www.yelp.ca/developers/

documentation/v2/category_list. Online; accessed 28 April
2017.

[10] Yelp Dataset Challenge. https://www.yelp.ca/dataset_
challenge. Online; accessed 28 April 2017.

[11] Yelp Price Categories. https://www.quora.com/
How-are-dollar-signs-calculated-on-Yelp-and-who-calculates-them.
Online; accessed 28 April 2017.

[12] Yelp Ranking Information. https://www.yelp-support.com/
article/How-are-search-results-ordered?l=en_US.
Online; accessed 28 April 2017.

[13] M. Drk, S. Carpendale, C. Collins, and C. Williamson. Visgets: Co-
ordinated visualizations for web-based information exploration and dis-
covery. IEEE Transactions on Visualization and Computer Graphics,
14(6):1205–1212, Nov 2008.

[14] M. A. Hearst. Design recommendations for hierarchical faceted search
interfaces. Master’s thesis, UC Berkeley School of Information, 2006.

[15] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.
[16] T. Ortner, J. Sorger, H. Steinlechner, G. Hesina, H. Piringer, and E. Grller.

Vis-a-ware: Integrating spatial and non-spatial visualization for visibility-
aware urban planning. IEEE Transactions on Visualization and Computer
Graphics, 23(2):1139–1151, Feb 2017.

[17] B. Saket, H. Kim, E. T. Brown, and A. Endert. Visualization by demon-
stration: An interaction paradigm for visual data exploration. IEEE
Transactions on Visualization and Computer Graphics, 23(1):331–340,
Jan 2017.

[18] B. Shneiderman. Dynamic queries for visual information seeking. IEEE
Software, 11(6):70–77, Nov 1994.

[19] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navi-
gation cues with embedded visualizations. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1129–1136, Nov 2007.

http://square.github.io/crossfilter/
https://d3js.org/
https://dc-js.github.io/dc.js/
https://www.npmjs.com/package/dc.leaflet
http://leafletjs.com/
https://www.r-project.org/about.html
https://www.trifacta.com/products/wrangler/
https://www.trifacta.com/products/wrangler/
https://www.yelp.com/vancouver
https://www.yelp.ca/developers/documentation/v2/category_list
https://www.yelp.ca/developers/documentation/v2/category_list
https://www.yelp.ca/dataset_challenge
https://www.yelp.ca/dataset_challenge
https://www.quora.com/How-are-dollar-signs-calculated-on-Yelp-and-who-calculates-them
https://www.quora.com/How-are-dollar-signs-calculated-on-Yelp-and-who-calculates-them
https://www.yelp-support.com/article/How-are-search-results-ordered?l=en_US
https://www.yelp-support.com/article/How-are-search-results-ordered?l=en_US

	Introduction
	Domain Terminology
	Yelp Limitations

	Related Work
	Data Visualization Manipulation - Filters, Control Panels, and Widgets
	Giving a start point for data exploration - Scented Widgets
	Presenting the data in a holistic manner - Multiple Facets
	Filter and Focus - Subset on Distributions

	Data and Task Abstractions
	Data Source
	Data Domain
	Data Abstraction
	Task Domain
	Task Abstraction

	Solution
	Implementation
	Data Parsing
	Tools for Front-End
	FineDyne Components
	Pinning
	Linked Highlighting
	Disadvantages of dc.js

	Results
	Usage Scenario: Katie the birthday planner
	Usage Scenario: Andy the company planner
	Usage Scenario: Sally the tourist

	Discussion
	Conclusion

