
Visualizations for Justifying Machine Learning Predictions

David Johnson

Fig. 1: A system for justifying machine learning predictions.

Abstract—Machine learning has seen its uses continually grow into fields far removed from its computer science and statistical roots.
Users with no training in machine learning and now confronted with the task of deciding whether to accept or reject a prediction from a
machine learning algorithm that they do not have the training to understand. This system addresses this issue by providing visualization
idioms that justify to the user why a prediction was made given important or outlying features.

Index Terms—Information Visualization, Machine Learning

1 INTRODUCTION

As research has grown in the field of machine learning (ML) more
strengths are discovered, and potential uses unearthed. This progress
has seen use of ML expand into many new domains, confronting users
with no training in ML with the task of understanding the reasons for
why an ML algorithm has made its prediction. To someone with no
domain knowledge, an ML algorithm is a black box.

Previous work by Biran et al. [2] indicates that in many fields being
able to understand the justification for why a prediction was made by
an ML system is the most important reason in whether to adopt an ML
system or not. This is particularly important in fields like health care,
in which there are very real and important consequences to accepting
an ML prediction as accurate. Given that its not a trivial task for a user
to learn the inner workings of some ML algorithm without previous
training, a system able to justify the reasons for an ML prediction to
a user without requiring the user to understand the underlying model
could be of great use. This system is intended to generate such a
justification.

In order to create these justifications, this system visualizes both
feature effect and feature importance. Feature effect and importance
measure a features contribution to a prediction and a features expected

• David is with the University of British Columbia. Email: davewj@cs.ubc.ca

contribution to a prediction respectively. These measures are chosen
because they are more interpretable than a raw fit model or raw fea-
tures; effect and importance let a user see clearly which features are
contributing negatively or positively as well as which are contributing
the most to the prediction. Effect and importance also allow a user to
easily spot outliers for instance, a feature that is high importance (high
expected effect) but low effect might be notable for some reason.

Through utilizing scatter and bar chart visualizations of effect and
importance the system presents a clear and simple way for users to
understand the justification of an outcome from an ML predictor. To
further increase system efficacy, I implemented an interaction that
allows users to also see features identified as key features - those that
are high effect and high importance.

Additionally, a text view is added which acts as a simulated result
of a natural language generation implementation. Although the natu-
ral language generation implementation was outside the scope of this
project, the textual justification contributes notably to the overall use-
fulness of the tool for the target user, and was therefore important to
simulate. The text presents a narrative which identifies the outcome of
the prediction on the test set instance, an explanation of how to use the
interactive effects of the chart, and identifies key features.

By combining the visualizations and the textual narratives the system
has a simple and concise way of providing justifications. The system is
viewable at https://plot.ly/dashboard/davewj:9/view

2 RELATED WORK

Biran et al [2] have written about difficulties involved in generating
justifications – difficulties particularly relevant to my system. They
suggest generating justifications is a task composed of two problems:
selecting relevant features, and discussing both the state of the model
and the real world implications of the features. These issues will
be the main two issues I expect to encounter during development.
Selecting relevant features is an implementation issue, one that will
require experimentation during development to determine the best
approach for selecting features. The efficacy of showing the user the
state of the model and implications of features will depend on the
visualizations I decide to use.

Krause et al [4] developed a system called Prospector which allows
for interaction with their system in such a way as to allow users to
see how a model performs after changing feature values. By allowing
this interaction, Prospector improves model interpretability and user
understanding of features and their impact on a prediction. Although
Krause et al indicate that Prospector is primarily intended to be used
by data scientists, I believe similarly styled interaction could be used
to also improve model interpretability for non-domain experts. The
interaction in Prospector is too complex for me to implement given
the time constraints, but a more simplistic implementation of model
interaction should be realistic and effective.

One notable decision for my system is that it focuses exclusively
on explaining logistic regression. Although this is primarily due to the
heavy time constraint, there is also reason to believe logistic regression
is a good choice due to its interpretability. Lipton [5] discussed model
interpretability, suggesting that interpretable models are transparent
and have strong post-hoc interpretability. Logistic regression fits these
requirements well, suggesting it is a good choice for this type of system.

In contrast to the idea of focusing on one interpretable model, Ribeiro
et al [6] argue that explanations of predictions should be model agnostic,
i.e. that explanations should be separate from the models themselves.
Rather than focusing on beginning with interpretable models, they
treat the original models as black boxes and instead learn interpretable
models on the predictions of the black boxes. Using this approach, they
developed LIME (Local Interpretable Model-agnostic Explanations)
[7] which generates both text and visualization explanations of their
learned models. Although this is quite an interesting approach, its
substantially more challenging and unrealistic for my project given the
time constraints.

Among previous works in developing actual systems, the most rele-
vant to my proposed project is PreJu (Prediction Justifier) by Biran et al.
PreJu [1] determines the effect of each feature in a logistic regression
classifier and the importance (expected effect) of a feature to determine
key features. Key features are then used to generate a justification
narrative with both text and visualization in an attempt to justify to the
user the importance of features to the model.

Although my current system focuses on justifying predictions from
a single learned logistic regression model, a possible future addition to
my system could be allowing comparisons of learned models. Kahng et
al [3] developed a system known as MLCube Explorer that allows users
to visually compare different learned machine learning models for a
particular dataset on measures such as accuracy and score distribution.
MLCube Explorer also shows that some learned model performs better
on an instance of a feature than some other learned model (i.e. model A
outperforms model B when A only when it has certain feature values).
The intention is to show that strictly comparing the accuracies of two
models is not necessarily effective enough, instead users could compare
model performance on subsets of features. A similar addition to my
system could possibly allow justification beyond the current concept
of looking at the state of one fit model. The finely grained comparison
allowing visualization of performance of multiple models against each
other on feature subsets could be considered a means of justifying
predictions to the user – particularly the idea of justifying why one fit
model outperforms the other (and on what subset of features).

3 SOLUTION

Ensuring to keep the user in mind, I chose to stick to simplistic vi-
sualizations that the user would likely be familiar with even without
training in ML or a related statistics field. A faceted view was used
with scatterplots and bar charts to visualize effect and importance. The
scatterplot was chosen to show effect against importance as a means
of allowing the user to visually see features that are key features (high
effect high importance) as well as those that are outliers. The bar plots
were used as a means of allowing direct comparison between feature
effect and importance and to cover one weakness of the scatterplot.

The most prominent and expressive visualization used in my system
is the scatterplot of effect and importance. Effect and importance are
two quantitative values for which we want a clear overview and the abil-
ity to find outliers, so the scatterplot is a very effective idiom. Scatter
plots use of both vertical and horizontal spatial position channels make
them intuitive to understand for users without much formal statistical
training. Theyre also quite likely to be familiar even for users without
any formal statistical training simply due to their wide usage in many
scenarios.

The scatterplot also allows for interaction. While hovering over
each point on the scatterplot a window appears showing the value and
feature name. Additionally, the plot has a Key Features button which
when clicked brings up a highlighted area on the plot. The highlight is
representative of key features, so that any points which overlap with
this highlight are identified as key features. These key features are
features which are both high effect and high importance.

Two separate bar charts, one for effect and one for importance, are
also used. The decision to implement two bar charts was chosen to add
an even simpler means of finding effect and importance. Bar charts are
very effective at allowing looking up of individual values. The ability
to quickly find effect and importance of a single feature ties in with
the textual justification, users that read that a feature is a key feature
in the text narrative can then quickly find the actual values of effect
or importance by glancing at the bar charts. This is easier for the user
than having to look at the scatterplot and mouse over points to see the
feature name.

The system implements some faceting for the purpose of showing
the multiple views of the scatter and bar charts together. As mentioned,
a particularly helpful aspect of this faceting is that the weakness of
the scatterplots in not immediately showing feature names on points
is covered by the bar charts which have feature names on their axis
particularly helpful when the textual narrative exists in which features
are referred to by name. In addition to this, faceting in such a way as to
juxtapose bar charts of effect and importance allows users to compare
both charts back and forth quickly so that differences in effect and
importance can be compared between features.

Although I used a scatterplot and bar charts, they were not the only
design idioms considered. The first other design considered was a
parallel coordinates idiom. The parallel coordinates idiom wouldve
been effective for allowing users to quite easily see all the features at
once, as well as seeing the range of the attributes. This wouldve worked
well at allowing users to quickly see which features are high effect or
high importance. The problems with this decision are that the parallel
coordinates couldve only shown one of effect or importance at a time,
so there would have to be two parallel coordinates views juxtaposed.
Additionally, there can be issues with occlusion on parallel coordinates
plots in instances in which the feature set is quite large. After consider-
ing the parallel coordinates plot it did seem that scatterplot was more
effective at displaying data.

I also considered using a pie chart as a means of showing effect and
importance. The strength here wouldve been to allow the user to pick
out key features quite intuitively by noticing one feature taking up a
large amount of the effect or importance pie. The strength was not
enough to make up for the multiple weaknesses present in pie charts,
however. Firstly, the pie chart wouldve required splitting the chart into
two, one for effect and importance. Second, pie charts have issues with
angle judgments. It can be quite hard to compare two similarly sized
slices of pie and determine which one is greater. It was decided that pie
charts were not going to be nearly as effective at displaying data of this

type as a scatterplot.
Lastly its also worth noting that I did consider adding the actual

logistic regression plot as well. The thought was it might be interesting
to the user, even those not familiar with logistic regression, to see
the generated s-curve shape of the logistic plot. I decided against it
however, thinking that users might try to find the connection between
the plot and effect and importance which are derived values and dont
necessarily have an impact on the s-curve plot. It was thought that the
small bonus of possibly being interesting was not worth the confusion
and particularly the screen real estate that it would require to add the
regression plot.

After considering multiple possible designs, the scatterplot with
supplemental bar charts seemed clearly the optimum choice. The
one weakness that the scatterplot might have is that the user doesnt
immediately see the names of each feature, instead they must mouse
over each point looking at feature names. This weakness is offset using
the bar charts however, which include the feature names as part of their
axis. These design choices together are concise and easy to understand,
while clearly displaying positive and negative effect and importance
while additionally making it easy for the user to spot outliers and
unusual events.

4 IMPLEMENTATION

The system was written in Python. Scikit-learn was also used to run
the logistic regression machine learning. Pandas was used for the data
structures. Plotly was used to draw the plots, as well as combine them
into a dashboard which allows fitting multiple plots into a single view.
Numpy was used for interacting with data structures and at times doing
matrix calculations.

A substantial amount of development time was devoted to calculating
effect and importance, as well as calculating key features. Biran et
al. [1] propose a method for calculating these 3 values. Effect is a
measure of the contribution of a feature in the instance being predicted.

Effect ji = θ jixi (1)

Essentially, we iterate through our test instance and find all the
feature values. Next, multiply the feature values by the matching model
coefficient.

Next, we calculate importance. Importance is a measure of the
expected contribution of a feature.

Importance ji = θ ji
∑x∈X j xi

|X j|
(2)

To find this value I find all instance in the training set that have the
same class as the predicted output class from the model. Then I find
the mean feature value for all these instances with the correct matching
class. Lastly, multiply the mean feature values by the matching model
coefficients.

Key features are those that are high effect and high importance. This
is measured by first quantizing features into those that are high and
low importance. High importance is defined as being the smallest
subset of features that contribute r of the total importance of all features
combined where r is a tunable parameter. I chose to use r = 75% as this
is also number recommended by Biran. Low importance is the set of
remaining features which do not contribute r of the total importance.

After quantizing features into high and low importance we quantize
features into high and low effect. To find features which are high
effect I find the point between the lowest high importance feature and
the highest low importance feature. In other words, I aim to find a
margin that maximizes the distance between high importance and low
importance features. Once I find the margin, I classify negatively
contributing features as high effect if they are further negative than the
margin. Similarly, I classify positively contributing features as high
effect if they are further positive than the margin. After this process I
now have a set of high and low importance features (both negatively
and positively) , a set of high and low effect features (again negatively
and positively), and a set of key features (also negatively and positively).
I am now able to plot effect and importance in a scatterplot as well as

individually in bar charts. I’m also able to implement the highlighting
aspect of the design that shows key features.

Since the scale of this project was not intended to be a full web
application implementation, I also had to manually do some feature en-
gineering for the simulated user. This involved changing some features
from names to categorical numerical values (0 or 1). Certain features
also had to be dropped in cases where they would not contribute to
a prediction. I also had to manually fit the logistic regression model
which again is a simulation of what the user would theoretically do.

5 DATA AND TASK ABSTRACTION

5.1 Domain-specific data
The data used here is an arbitrary dataset chosen by a user. Since a
user can choose an arbitrary data set to visualize, understanding the
semantics of the data is a task that is up to the user herself. The dataset
will be a dataset fit for machine learning i.e. the dataset will have a
training set and test set. In addition to the training and test sets, there
will be a logistic regression model that is fit to the training set. Effect
and importance values will be calculated from this fit model, training,
and test set instances.

5.2 Domain-specific task
The task is to have the system first make a single prediction on one
instance in the test set. A justification should be created based on effect
and importance which allow a user to understand why a prediction was
made, and allow the user to utilize the justification to either agree and
accept the prediction or disagree with it.

5.3 Abstract data
In abstracting the data it seems it is composed of items (training and test
set instances, attributes (features) and values (effect and importance) in
a table. The attribute are all quantitative.

5.4 Abstract task
The general overview here is that I have quantitative attributes (feature
values) and want to generate a scatterplot and two bar charts. This is
done for the purpose of analysis, discovery, exploration and enjoyment.
I want to accomplish this by arranging tabular data. The system has
a producing task since its required to derive new data from original
raw data - notably, effect and importance must be derived from the
original feature values. The system additionally derives an attribute for
key feature classification. I also want to add manipulation by allowing
highlighting as a means of demonstrating on the scatterplot where
key features are located. The system also needs to facet features into
multiple views, the scatterplot and juxtaposed bar charts.

6 RESULTS

Prior to Figure 1 the user has already obtained their own data set and
has fit a logistic regression model. The user has brought the fit model,
the training set used to train the model, and the test set and loaded
them into the model (in the current implementation this must be done
in the actual code but in future implementations could be accomplished
through a UI in a full web application deployment).

The user first starts by inspecting the justification narrative which
includes text that states the actual prediction outcome in Fig. 2. The
user proceeds to read about which features are identified as key features
- features that contribute strongly either negatively or positively to the
prediction.

After reviewing the text the user focuses on the scatterplot of impor-
tance and effect in Fig. 3. Using the visualized scatterplot, the user can
gain a better sense of how strongly certain features contribute to the
predictions beyond the simpler textual explanation they looked at first.
The user interacts with the chart by mousing over the points on the
graph to discover that its the Sex feature that seems to be contributing
very negatively compared to the other features in the dataset in Fig.
4. This is a strong indication that the justification for this prediction
is due to the Sex feature. The user presses the Key Features button
which brings up a highlight upon which any overlapping points are

Fig. 2: User inspects narrative (highlighted in red).

Fig. 3: User inspects scatterplot (highlighted in red).

identified as key features in Fig 5. This allows the user to see that
indeed Sex is an important feature here, but so is Age and EmbarkedC
which also contribute strongly negatively and positively respectively in
comparison to other features.

Noting that EmbarkedC is a key feature but is somewhat lacking in
importance, the user turns to the importance bar plots to gain a clearer
sense of just where EmbarkedC ranks in importance in comparison to
the other features in Fig. 6.

The user, now understanding why this prediction against Survived
was made, is able to decide to accept the prediction as correct, or decide
that the prediction is inaccurate due to its reliance on certain features
for this particular prediction.

7 DISCUSSION AND FUTURE WORKS

7.1 Strengths
The main goal of this system was to provide a justification for why a
ML prediction is what it is by visualizing the effect and importance
of features. It was also important to keep the users of this system
in mind - meaning its important to keep in mind these are untrained
users, cognitive load needs to be kept low. It was key to the design to
maintain simplicity, as adding design complexity on a system that is
designed to remove complexity from a ML model would just make for a
contradicting design. The system’s simplicity also adds to how intuitive

Fig. 4: User interacts with chart to see feature names (highlighted in
red).

Fig. 5: User presses Key Features to see points classified as key
features (highlighted in red).

Fig. 6: User turns to bar charts (highlighted in red).

it is for the user. It’s quickly intuitive what the prediction would be
without even looking at the text that states the predicted outcome simply
by seeing which features are stronger, negative or positive. The system
does not have any unnecessary design additions that would risk simply
getting in the way of understanding for a user. I believe that this system
accomplishes all its original goals. The main strength of this system
then, is that it accomplishes its stated goals. The design makes it clear
what are key features, where there are outliers (where effect is much
higher or lower than expected), and the overall contributions either
negatively or positively by the feature set.

Although not specifically stated as a goal, one advantage to the
simplicity of the design is also in the speed with which the system
works. There is nothing that takes any significant amount of time to
render or compute with the system, so it also runs very quickly.

The implementation also presents another strength, which is that
the system would be quite easy to embed in a web application. Use of
Plotly makes embedding quite straight forward as the entire dashboard
structure can be embedded in an iframe. This would allow a web
application to simply present a front facing UI that allows a user to
upload a dataset with training and test examples and have the backend
compute the feature engineering automatically for the user and feed the
features into this system. In this sense, the advantage is the ease with
which a user could access this system. They would not need to worry
about downloading any extra libraries or packages and trying to install
them. They would simply need to open a web browser and go to the
address with their dataset in hand.

7.2 Weaknesses
A big limitation is that the system is not fully implemented. To re-
alistically be useful the system needs to have a full web application
deployment. Currently, there is a contradiction in that in order to be
used the user would need to do their own feature engineering. To do
this requires enough of a knowledge that the user likely has at least a
general sense of the functioning of a logistic regression model anyway,
and therefore the system is a bit less effective for them (though the
system certainly could still be helpful and interesting). With a full web
application deployment a user could simply be prompted to just upload
some data set and a backend could handle automatically doing basic
feature engineering. Another aspect of the system that could be imple-
mented is the natural language generation aspect for the justification
narratives. The narratives could add quite a bit of helpfulness to the
justification, but without the natural language generation implemented
the text must be manually written.

An additional limitation of this system is that it focuses only on
logistic regression. Logistic regression was chosen mainly for its in-
terpretability, not its overall effectiveness. Although some problems
certainly can be predicted well by logistic regression, there are lots of
types of problems which one would not see very accurate predictions.

7.3 Limitations
Work on this project was limited by the amount of time available,
as well as my unfamiliarity with Plotly. With more time I believe I
could’ve implemented at least a partial start to the natural language
generation aspect of the design to have the justification narratives be
automatically generated.

If I was more familiar with Plotly to begin with I think I might have
been able to implement some linked highlighting effects with the bar
charts and scatterplot so that by mousing over a feature on the bar chart
the corresponding feature point would be highlighted on the scatterplot
or vice versa. Without familiarity however, I ended up spending too
much time implementing the rest of the visualizations and did not have
time to complete this type of linked highlighting. Additionally, the
Plotly documentation is somewhat lacking. The documentation covers
the basics quite well but I found in numerous places the documentation
was actually wrong or completely missing for more difficult tasks.

7.4 Future Works
As future work I would like to fully implement the natural language
generation system. The natural language generation could be a very

Fig. 7: A potential redesign that incorporates multiple ML models into
the visualization justifications.

effective aspect of the system to have. By implementing this the system
could textually explain the outcome of the prediction, provide general
instructions such as what effect is and what importance is, point out to
the user what the key features are, and identify to the user some outliers
or unexpected feature results (such as those with high importance but
low effect). It’s possible that just having the text alone would be quite
helpful in justifying to a user why a particular prediction was made,
so being able to combine the text with the visualization should add a
effective way of understanding the prediction.

Assuming that I had implemented the natural language generation
aspect of the system, I would also add some linked highlighting. With
linked highlighting the user could click or mouse over a feature in the
textual justification narrative and see the corresponding feature point be
highlighted on the scatterplot, as well as on both bar charts. This would
help the user logically mesh together all aspects of the design at once
and likely contribute strongly to their understanding the prediction. It
would also speed up the process of finding features that they read about
in the narrative that they find interesting.

I would also definitely want to do a full web application development.
Id want to have a UI which allowed users to just select the data set to
upload and have the system automatically handle difficult tasks like
feature engineering.

A future addition to the system that might be quite effective is an
ability to use other ML algorithms besides just logistic regression, or
even a way to visualize the effect and importance of features from
multiple fit ML algorithms at the same time such as in 7. This could be
visualized by plotting the feature effect and importance from multiple
ML models into the scatterplot and adding in color hue to identify the
different models. The advantage to doing this would be that if one
model has a particularly unusual prediction compared to other models,
the user might be more inclined to disregard the predictions of that
model. The opposite is also of course true, if the user sees 6 models all
justifying a prediction in similar ways (similar effect and importance
for features) they might feel more comfortable accepting the predictions
as accurate.

7.5 Lessons Learned
I certainly feel that I learned to take a much longer look at what sort
of tools are out there before deciding on using one for this type of
project. I had originally decided to use Matplotlib prior to Plotly, but
after beginning the coding I felt it wasn’t quite as flexible as I had
hoped. I also thought that doing certain tasks in Matplotlib required
some ’hacked together’ solutions rather than being things that were
support natively. I eventually decided to scrap my initial work and
move to a new tool which meant that I had less time for implementation.
I decided on Plotly thinking it would good looking plots and that the
dashboard would make a good UI frame for the system. However after
using the tool for a while I found that there were certain tasks that
seemed to be unimplemented for Python but were implemented for
other languages like Javascript. Not knowing Javascript this didn’t help
me. I think in the future I would definitely focus a bit more on really
closely looking at potential tools before deciding on one.

8 CONCLUSION

This is a system which intends to justify logistic regression predictions
to a non-expert user without requiring the user to understand the under-
lying workings of the logistic regression model. It accomplishes this by
faceting a scatterplot with juxtaposed bar charts and includes a textual
justification narrative. The system focuses on simplicity of design and
conciseness of idiom expression. Although I believe the system does
accomplish the broad view of its goals, it does also allow room for
improvement through further implementation. I believe that I have laid
the groundwork for an effective full web application deployment in
the future of a system that could be effective and widely used as ML
continues to see its use expand.

REFERENCES

[1] O. Biran and K. McKeown. Justification narratives for individual classi-
fications. In Proceedings of the AutoML workshop at ICML, vol. 2014,
2014.

[2] O. Biran and K. McKeown. Generating justifications of machine learning
predictions., 2015. Retrieved from http://www.cs.unc.edu. doi: techreports/
89-022.pdf

[3] M. Kahng, D. Fang, and D. H. P. Chau. Visual exploration of machine
learning results using data cube analysis. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics, p. 1. ACM, 2016.

[4] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspec-
tion of black-box machine learning models. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, pp. 5686–5697.
ACM, 2016.

[5] Z. C. Lipton. The mythos of model interpretability. arXiv preprint
arXiv:1606.03490, 2016.

[6] M. T. Ribeiro, S. Singh, and C. Guestrin. Model-agnostic interpretability of
machine learning. arXiv preprint arXiv:1606.05386, 2016.

[7] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1135–1144. ACM, 2016.

	Introduction
	Related Work
	Solution
	Implementation
	Data and Task Abstraction
	Domain-specific data
	Domain-specific task
	Abstract data
	Abstract task

	Results
	Discussion and Future Works
	Strengths
	Weaknesses
	Limitations
	Future Works
	Lessons Learned

	Conclusion

