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           Fig. 1. Broken Chain Vis a system for examining the embedding of a problem onto DWave’s hardware.   

Abstract—We present an information visualization investigation into the quantum annealing domain. We conduct original 
research to characterize the data and task abstractions in this field. The task and data abstractions that we explore are used as the 
basis of a new representation of the Chimera graph, an important part of the current quantum annelaing process. Our redesign 
reduces the visual clutter often associated with representations of the Chimera graph, while remaining familiar to users. We 
propose a system for examining an embedding, using our redesigned Chimera graph represenation. 
Index Terms— Quantum annealing, graph representation, heatmap, design paper, information visualization, survey 

 

1 INTRODUCTION 
Quantum Annealing is a burgeoning field that has experienced 

substantial growth as annealers begin to solve real world problems. 
As major powers such as Google, Lockheed Martin, and Los Alamos 
Laboratories continue to become more involved, the depth of 
literature continues to increase. Despite this growth, work on 
visualization has lagged behind the development of other tools. 
While a few core visualizations have become de-facto industry 
standards, a systematic review of visualization needs and best 
practices in the field has not been attempted.  

 
This paper will attempt to characterize the existing visualizations 

in the domain, sourced from prominent papers and research groups. 
After characterizing the existing visualizations, it will then be 
possible to extract the best practices and make recommendations to 
improve or redesign those visualizations. In the case that there are 
gaps in the literature relative to the tasks accomplishable by 

visualization, this paper will propose new visualizations based on the 
best practices established beforehand. 

 

1.1 Contributions 
• Precisely characterize available data for visualization in the 

quantum annealing domain 
• Through surveys of domain experts and existing literature, 

examine the scope of potentially useful visualization tasks 
• Characterize existing visualizations in the quantum 

annealing domain 
• Critique and offer recommendations for best practices on 

existing recommendations 
• Propose new visualizations 
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Fig. 3. The process of transforming a logical graph into a physical 
graph. A problem with 4 nodes and 5 edges is reformulated as a 
conflict graph containing one node for each of the original edges. The 
conflict graph is then modified to fit onto the Chimera architecture in 
the embedding stage as depicted by the square and pentagon 
shapes on the left of the diagram. 

Fig. 1. A representation of the DWave hardware. Each qubit, a circle, 
is connected by a coupler, a line, to four qubits in its local block, as 
well as a qubit in each of two neighboring blocks. White qubits are 
functional, while red qubits are faulty. A QUBO is mapped into a graph 
with this pattern of nodes and edges. Each unique QUBO will place 
different biases on each node and edge shown above. 

Fig. 4. A mapping from a logical graph (bottom) to a physical graph 
(top). The two chains have been circled to show that they represent a 
single, logical value, and it can be seen that the number of edges 
leaving each variable in the logical graph is equal to the total number 
of edges leaving its corresponding chain. 

2 DOMAIN OVERVIEW: QUANTUM ANNEALING  
A quantum annealer is a solver that takes in a weighted, 

undirected graph, where nodes are qubits (values that end up as 1 or 
0), and edge values, known as couplers, represent the correlation 
between qubits. Quantum annealers and traditional computers both 
attempt to solve combinatorial optimization solvers, however 
quantum annealers may have a substantial runtime advantage over 
classical computers. Graph similarity problems and scheduling 
problems are both common combinatorial optimization problems 
faced in industry, and are each NP-hard. Quantum annealing is 
designed for these types of problems.  

 
A quantum annealer takes a physical representation of the 

problem and samples from low energy states of that physical system 
which correspond to good solutions of the optimization problem. 
That physical system can be thought of as a graph and is made up of 
qubits, representing variables or nodes, and couplers, representing 
edges. A qubit is a quantum bit that can be conceptualized as being 
in both the 1 and 0 states at the same time. A coupler is a link 
between two qubits that influences whether the connected qubits are 
the same or different values. To be represented as a physical graph of 
qubits and couplers, the problem must be first formulated in a 
specific way, called a quadratic binary optimization problem 
(QUBO).  

 
The QUBO specifies the local bias for each qubit between -1 and 

1, with a positive bias pushing the qubit to end at a value of one and 
a negative bias pushing the value to zero. It also specifies the bias of 
each coupler between -1 and 1, with a positive value indicating that 
the two qubits connected by the coupler are biased to take the same 
value. Fig. 1 shows a representation of DWave hardware that a 
QUBO could be mapped onto. 

 
To be solved by a quantum annealer, not only does the problem 

need to be a QUBO, but it must fit on the available physical 
hardware. A general QUBO can be represented as a fully connected 
graph which allows for coupling between any two nodes. However, 
currently available hardware is not fully connected. The only 
commercially available quantum annealer, the DWave 2000Q, only 
allows for connections in a specific way, called the Chimera 
architecture. Complicating things further, in a given physical 
machine, some small portion of the qubits will be known to 
malfunction, and thus are not used. An embedded problem is 
represented by a graph known as the physical graph, since it encodes 
information the way it is physically connected in the hardware. The 

original problem is represented by a graph known as the logical 
graph, since it represents information as it most logically maps to the 
variables of the problem. The transition from a logical graph to a 
physical graph is shown in Fig. 3 [1], where the square-shaped graph 
is the logical graph and the minor embedding is the physical graph. 

 
The problem of fitting a general, potentially fully connected 

QUBO onto the physical hardware is known as embedding and is 
currently one of the biggest hurdles to solving real-world problems. 
In the most general case, this is known to be NP-hard [2]. However, 
embedding onto a Chimera graph can be done in polynomial time, 
though the time to find an exact embedding can still be prohibitive 
even for 10 qubits. Thus, embedding is done heuristically and is the 
subject of active research. Embedding involves finding 
correspondence for nodes in the original formulation of the problem, 
called logical qubits, onto the variables of the hardware graph, 
known as the physical graph. To make that possible on a less 
connected graph, a logical qubit is often represented as a chain of 
physical qubits. An example mapping is shown in Figure 4 [3], with 
logical variables ! and " each being mapped to a chain containing two 
physical nodes, #$ and #%, and &$ and &%, respectively. 



 
After embedding the QUBO, if needed, the quantum annealer 

solves the problem and returns a solution, which is a configuration of 
values on the nodes of the physical graph. The QUBO formulation, 
given this physical solution, returns the associated energy; a lower 
energy corresponds to a better solution. To find the low energy 
system, the annealer must attempt to simultaneously satisfy every 
constraint, with each qubit wanting to be up or down, and each edge 
wanting to share qubits with either the same or opposite value. The 
more constraints that are broken, and the strong the broken 
constraints, the higher the system’s energy will be. The probability 
of the annealer returning a configuration is inversely proportional to 
the energy of the configuration, so better solutions are more likely to 
be returned, and equal energy solutions should be found at equal 
rates. 

 
For all problems on a current quantum annealer, even NP-hard 

problems, the time it takes to arrive at a solution is on the order of 
microseconds. However, as it is a probabilistic solver, no solution is 
guaranteed to be anywhere close to the global minimum energy, i.e. 
the best solution. Thus, a quantum annealer is usually run on the 
order of 1000 times for a given problem before the solutions are 
returned en masse. A problem’s difficulty for a quantum annealer 
can be characterized in terms of how many iterations are required 
before having a 99% chance of finding the true solution.  

 
Annealing is not a solely quantum algorithm, and there are two 

major other classes of annealing: Simulated Annealing (SA) and 
Simulated Quantum annealing (SQA). SA is a classical algorithm 
run on non-quantum computers that also solves QUBO problems. SA 
models a problem as a system with temperature, and simulates what 
happens when the temperature is slowly decreased, eventually 
finding a local minimum. The advantage of QA over SA lies in 
quantum phenomena such as quantum tunnelling. Specifically, 
quantum tunnelling allows a quantum annealer in a given state of 
qubit values to transition to another, potentially lower, energy state 
by flipping multiple qubit values at once. This can occur even when 
the in-between states have an associated temperature that would be 
prohibitive for SA.  

 
Simulated Quantum Annealing (SQA) attempts to take advantage 

of these effects, however it is only able to simulate the phenomena 
that drive QA. While SQA is often slower than QA, and has different 
underlying processes, it can run a greater variety of problems since it 
is not constrained by current quantum hardware. SQA is therefore 
the algorithm of choice when attempting to predict how an algorithm 
may perform on QA, or on how architectures other than the Chimera 
graph may affect QA algorithms. 

3 TASK AND DATA CHARACTERIZATION 
During my literature search, I found little to no relevant 

research on how to characterize the tasks and data associated with 
the field. Therefore, I needed to conduct research with domain 
researchers to fill in this knowledge gap. I conducted this research 
with 1QBit as they are the leading commercial software organization 
in field of quantum annealing. I started with a survey because I 
wanted to gain a broad overview of the problems faced and solutions 
used by researchers in this field. After doing the survey, it was 
necessary to gain richer and more detailed data so face-to-face 
interviews were conducted with selected survey responses to 
understand the complexities and nuances of the problems faced.   
 

To begin characterizing the visualization tasks important to 
domain experts, we prepared a mixed qualitative and quantitative 
survey for employees of 1QBit, a company that does research on 
quantum annealing. The survey (see Appendix 1) solicited feedback 
from 20 researchers and six software developers on their 
visualization needs. That data was analysed by abstracting the 

requirements of each domain expert and counting the occurrences of 
each task mentioned.   
 

The results of the survey made it clear that the needs of the 
researchers were diverse, however it was not immediately conclusive 
how they related to each other or how to prioritize them. Many tasks 
were articulated in different ways, and it was not clear how many 
were genuinely separate tasks, or whether they were just different 
approaches to the same task.  
 

The results of the initial survey helped contextualize and direct 
our focus for what tasks are worthwhile, but further interviews were 
needed to gather specific requirements. Researchers identified 
through the survey were interviewed, as well as 1QBit’s software 
development lead. Interviews were conducted in an unstructured 
style (see Appendix 2). Notes were taken during the interview for 
later analysis. We conducted six face-to-face interviews on-site at 
1QBit to finalize the concrete list of visualization tasks that were 
important to these domain experts, as well as understand how they 
were approaching these problems currently. The result of those 
interviews was a list of tasks and tools, as well as researcher input on 
potential improvements. We use the results of those interviews to 
inform the remainder of this paper.  
 

From those interviews as well as the initial survey, we found 
that there was a meaningful segmentation of both data and tasks into 
four categories based on the workflow of research in quantum 
annealing.  
 

1. The original problem (OP) 
2. The embedding of the problem (EP)  
3. The parameters and properties of the solver (PPS) 
4. The results of the solver (RS) 

 
These are the four main sources of data that can be used for 

visualization, and a majority of the tasks identified deal with exactly 
one of those, although some tasks connect two categories. 

4 DATA ABSTRACTION 

4.1 Original Problem 
All QUBO problems can be abstracted as a graph. A graph 
representation allows for a wide variety of data from different 
sources to be abstracted in terms of objects and connections. To 
represent graphs, a node-link representation is common and is what 
we will use for the remainder of this paper. This representation 
encodes objects as nodes, and connections as edges, as in Fig. 2.  
 
These graphs represent an optimization problem to be solved. There 
are a wide variety of problems which can be represented in this way 
such as the comparison of two graphs, the finding of semi-prime 
numbers, object recognition, etc [4].   
 
Each graph can be represented as G=(V,E,	()*+,)-, .)*+,)-), where V 
and E are the vertex biases and edge biases of the graph at some 
index. V and E can reach 2048 and 5600 respectively on the most 
recent DWave hardware [5]. In practice, due to the limited 
connectivity of DWave’s Chimera architecture, we can often only 
use on the order of 50 vertices. An example can be seen in Fig. 14 
where all 2048 nodes are displayed.  
 
The values on each node are called biases and are given as part of the 
QUBO problem. A positive value on a node indicates that that node 
should end up as a one when that problem is solved. The size of a 
bias determines how strongly solutions with the opposite assignment 
are penalized. The maximum values for a bias are determined by the 
hardware, however are usually on the order of plus/minus one.  
 



 

Fig. 5. A sample solution obtained from DWave on a toy problem with 19 physical variables generated by 1QBit. (Above) is a 
summary of the solutions, along with the best solution found. (Below) is a list of each solution, how often it occurred, and the 
dictionary specifying the assignment of values to qubits. 

The values on each edge are also referred to biases. Instead of 
biasing a node to a specific value, it biases a pair of qubits. A 
positive value expresses a preference for the two connected nodes to 
have the same value. A negative value expresses a preference for the 
two connected nodes to have different values. As with the bias on a 
node, the size determines the strength of this preference. 
 
()*+,)- and	.)*+,)- are optional label attributes, giving additional 
information about each node and edge which is not necessarily 
passed on to the DWave solver, but which may be important in other 
ways, such as specifying a way to display the graph with coordinates 
or colours for each vertex.  
 
For the remainder of this paper, we will refer to the above as the 
logical or original problem, as well as the logical nodes and edges. 
We will refer to a bias on an edge as conforming or anti-conforming. 

4.2 Embedded Problem 
As described in the Domain Overview above, it is not a trivial 

process to embed a problem onto the DWave hardware. The final 
physical graph, with the logical variables represented as chains, can 
be considered derived data. This derived data includes the original 
edges and nodes, as well as new edges and nodes. As a contrast to 
the original problem, this can be expressed as 
	/012-34*)=(V,E,	.51*36,89). V and E are the same as in the original 
problem, while 	.51*36	is new. .51*36 are edges that are a part of a 

chain, which means that they are all strongly prefer their connected 
vertices to conform to each other. All vertices connected by 	.51*36 
edges will be biased in the same direction. 

 
We will refer to this as the physical problem or graph, with its 
constituent parts referred to as physical nodes and edges, specifying 
when important if physical edges are a part of the chain. 

 

4.3 Parameters and Properties of the Solver 

A solver will have its own graph structure. For DWave, that is 
currently the Chimera structure.  

The Chimera architecture is defined by regular blocks of eight 
qubits; each qubit is connected to four intra-block qubits, as well as 
two more inter-block qubits. 

The two most important parameters are number of samples and 
anneal time per sample. Number of samples determine the number of 
times that DWave is independently run on the same problem. Anneal 
time per sample determines the amount of time that the solver spends 
during the process of finding the solution. The underlying physics of 
this annealing process is beyond the scope of this paper, however the 
relationship between anneal time and performance is not trivial. An 
examination of the interpretation of anneal time as a parameter is 



outside the scope of this paper. 

4.4 Results of the Solver 
Each time a solver is run, it will return a list of solutions. energy as 
well as a dictionary containing assignments of one or zero to each 
node. An example set of results from DWave can be seen in Figure 
4.  
The cardinality of the solution list can range from one to thousands. 
The cardinality of a dictionary can be up to the size of the physical 
graph, 2000 in the case of the latest DWave machine. This is small 
compared to the bits on a computer, but large enough to be 
competitive with traditional computers on some problems. 

5 TASK ABSTRACTION 
A typical researcher has a general workflow for analyzing or solving 
problems using quantum annealing. This workflow consists of 
moving the data through the four steps outlined in the data 
abstraction section. The previously mentioned survey of 1QBit 
researchers and software developers was consulted in order to list 
and characterized all tasks within this workflow in terms of the data 
that they required. These results are presented in Table 2. The current 
established visualization techniques associated with each task can be 
placed into one of the following three ranks: 

1. Well illustrated by visualization techniques borrowed from 
fields outside the domain of quantum annealing. Lowest 
importance. 

2. There is work to be done on this topic to bring tools up to 
best practices in information visualization. Moderate 
importance. 

3. This is an important task with substantial needs 
unaddressed by the current state of visualization in the 
quantum annealing domain. Highest importance. 

From now on, these will be described as Rank 1, Rank 2, and Rank 3 
tasks. 
 

 Task Op Ep Pps Rs Rank 

1 Examine the logical graph �    1 

2 Compare distributions of 
solutions to a known 
theoretical distribution 

   � 1 

3 Compare algorithm 
performance as problem size 
scales 
 

   � 1 

4 Compare the physical and 
logical graphs  

� �   3 

5 Discover areas on original 
graph that require long chains 

� �   3 

6 Summarize the ease of 
embedding for a logical 
problem 

�    2 

7 Compare distribution of 
degenerate solutions to what is 
expected from fair sampling 

   � 2 

8 Discover the quality of an 
embedding 

 �   3 

9  Examine the effects of 
parameters such as anneal 
time and temperature on 
DWave performance 

  �  1 

10  Discover which nodes are 
candidates to be fixed to 
improve performance 

   � 2 

11  Discover patterns of broken 
chains 

 �  � 3 

12  Inspect patterns of chains for 
stability 

 �  � 3 

13  Understand the topology of a 
problem on the physical graph 

 �   3 

 
In this section, we will examine each rank of tasks, with the rank of 
each task as listed in the above table.  
 

5.1.1 Rank 1 Tasks 
 
Some areas of the quantum annealing process are not so different 
from their classical computing counterpart. The data that comes from 
these tasks are similar to data seen from a classical computation, and 
thus a variety of good visualizations already exist to represent it. We 
will give a brief overview, but not discuss each task further. 
 
1: Examine the logical graph. Although not discussed in this paper, 
it is essential for a researcher to be able to examine and manipulate 
their original input graph. These graphs are of arbitrary shape and 
have arbitrary properties, and we refer you to the section on graph 
visualization in this survey paper for more information [6].  



 

Fig. 6. Line graphs representing scalability of quantum annealing algorithms (left) and classical sorting algorithms (right). These 
address the comparison of algorithm performance task using similar idioms. The color identity channel is used to identify algorithms, 
while the position magnitude channel is used to encode performance of a single problem instance. Notice how the left graph 
encodes more information in terms of the variance in performance of each algorithm. 

Fig. 7. A plot showing the probability of finding each of three 
possible solutions for different settings of the annealing time 
parameter. The total (dotted) line indicates the overall 
probability of finding a solution for a given annealing time. 
The three potential solutions are encoded with different 
colored lines, however both the second and third lines are 
encoded with the same pattern, and coincide completely. 
This reflects a poor design choice as the second, red, line is 
completely occluded, and it is up to the user to infer its 
position. 

Fig. 8. A barcode graph showing whether a variable is assigned the 
value of one, blue, or zero, red, for a given solution. The vertical 
patterns of blue and red indicate that there is some stability in 
assignments of qubits across solutions. Qubits that are a single value 
for all solutions found so far may be considered strong candidates for 
fixing in a subsequent run of the same problem. This idiom does a 
good job of indicating overall whether a problem is a candidate for 
fixing qubits, however, it is not easy to make fine distinctions on a 
single variable level. 

 
 
2: Comparison of algorithm performance with respect to 
problem size. This has been done repeatedly in the classical 
computing realm, with a very similar data format coming from 
quantum computations. The figure [7][8] shows a visualization used 
to compare the scalability of different QA algorithms next to a 
visualization comparing classical sorting algorithm runtimes. In both 
cases, each algorithm is represented by one or more lines of the same 
color with the height and slope of the trend line encoding 
information about the efficiency of the given algorithm. 
 
3: Examine the effects of parameters such as anneal time and 
temperature on DWave performance. This may in fact be the task 
that is represented by the greatest number of figures in the literature. 
However, in general, almost all of these figures are some variation of 
a line chart where one parameter is plotted against another. Matsuda, 
Nishimori, and Katzgraber’s paper is an excellent example of this 
type of analysis. [9]  
 

 

 
4: Compare distributions of solutions to a known theoretical 
distribution. Given a set of solutions, researchers want to see how 
the distribution of energies correspond to what they expected. Figure 
[9] is an example of such a distribution graph.  There are aspects of 
this task related specifically to quantum annealing research, in that it 
is usually a Boltzmann distribution being compared to. It is an 
important task to consider while designing visualization systems, but 
as a separate task it is already well accomplished using standard 
plotting tools like MatPlotLib. 

5.1.2 Rank 2 Tasks 

 
Rank 2 tasks again are tasks that draw from the visualization 
literature. These tasks are at least somewhat important to examine 
and bring up to the standards of best practices in other fields. 
 

 

 



Fig. 9. Schematic of two logical groups (large enclosing circles) 
representing logical variables. Physical qubits are denoted by blue 
circles; physical problem couplings are denoted by black lines, chain 
couplings by red lines. This is used to show how a single logical 
variable can be represented as many connected physical variables. 
However, this does not scale well, as the visual clutter grows 
exponentially in the number of logical variables. 

Fig. 10. Three graphs show different ways of representing the same 
problem. The logical graph (left) is the problem to be embedded. The 
other two images are physical graphs (middle and right) showing the 
results of two different embedding strategies onto a Chimera graph. 
As more edges are introduced into the graph, the level of visual 
clutter escalates rapidly. 

1: Summarize the ease of embedding for a logical problem. 
Before proceeding with further work, it is necessary to determine if 
the problem is feasible to solve on quantum hardware. This task is a 
first check on that feasibility. This is often done by examining the 
degree distribution of this problem. This can be done interactively 
without visualization, but visualization would provide a more 
nuanced understanding of the difficulty. 
 
2: Compare the distribution of degenerate solutions to what is 
expected from fair It is important for future work on quantum 
annealers to characterize DWave in terms of how fairly it samples 
different solutions. For researchers interested in the properties of 
DWave, an important task is to understand how, why and when 
DWave deviates from fair sampling. This is important for some 
researchers, but it is not clear that it is immediately important for 
most problems. 
 
3: Discover which nodes are candidates to be fixed to improve 
performance. A potential way to improve the performance of a 
solver is to reduce the space it has to search by fixing variables. 
Using visualization to is explored during the future work section. 
 

 

 
 
4 and 5: Compare the physical and logical graphs/discovering 
areas on the logical graph that require long chains. These are two 
interlinked tasks that both relate to comparing the physical and 
logical graphs. These are important tasks, and can be effectively 
accomplished with the linked interaction idiom. One current 
approach is shown in figure x, where every qubit contained in a 
chain is grouped together and the chain is circled. This however is 
prone to clutter for even moderate numbers of logical qubits, and 
alternative ideas will be discussed in the Future Work section of this 
paper. 
 

5.1.3 Rank 3 Tasks 
When evaluating which set of tasks to focus on for this paper, we 
took into consideration both how important each task is to the user, 
as well as how much room for improvement there was relative to the 
current best practices. Through our interviews with domain experts, 
it seemed that there were already adequate tools for many tasks such 
as plotting of distributions and logical graphs. However, that was not 
the case for the embedding process, or anything related to chains, as 
those are tasks unique to quantum annealing and without much 
obvious literature to draw from. Thus, we take the best practices 

from information visualization and apply them to the four following 
tasks related to chains and embedding: 
 
1: Discover the quality of an embedding 
A problem can be embedded using one of many possible embedding 
algorithms. Metrics can help to determine the best choice of 
embedding; however, a direct visualization will often reveal more 
than metrics or textual representations of the graph.  
2 and 3:  Discover patterns of broken chains; inspect patterns of 
chains for stability 
As we will soon see, the visualization for broken chains is neither 
well designed nor fully featured. This makes it difficult for 
researchers to build an intuition and eventually a formal 
characterization of what patterns of chains contribute to a high 
proportion of broken chains. It is also not really possible to 
meaningfully compare patterns of chains, or closely inspect a single 
chain to determine its stability. 
4: Understand the topology of a problem on the physical graph 
While there are multiple representations of the physical graph which 
allow for micro-level understanding of topology, if one is willing to 
spend the time, the views that give an overview on the macro-level 
topology are lacking. This will be expanded on in the immediately 
that immediately follows.  
 
 

6 PROPOSALS FOR NEW VISUALIZATIONS 
One of the most important aspects of visualizing the current state of 
the quantum annealing is visualizing a physical graph. Currently, the 
only physical graph layout is the Chimera graph described in the 
domain overview, with blocks of eight nodes connected to 
neighboring blocks. While there are fewer degrees of freedom in the 
design space, the connections in a chimera graph are prone to visual 
clutter, as illustrated in Figure [10]. Figure 5 shows the current most 
common representation of the Chimera structure.  
 

 

 
 
To begin to redesign this idiom, we established the axes for our 
design space. These axes assume that we arrange nodes in blocks. 
One motivation for doing so is that each of the eight nodes in each 
block contains four edges within the block, with only two 
connections externally. This indicates that even when not 
constraining them to be together, most force directed algorithms 
would keep blocks together in an irregular way. This representation 
is further backed up by the fact that these qubits are physically 
grouped on the DWave chip. 
 
By forcing this constraint, we open the door for more idioms that can 
rely on that assumption and a more thorough discussion of the design 
space. Throughout the rest of this paper, we consider qubits to be 



 

Fig. 11. Two representations of an 8-qubit block. (Top left) The 
variables are shown as black lines, with couplers denoted by the set 
of blue points where the lines intersect. (Top right) The variables are 
the black dots, and the couplers are shown as the blue connecting 
lines. (Bottom) The larger graph shows 4 blocks with a total of 32 
variables. Red circles represent couplers between blocks. 

Fig. 12. The the overview in DWave’s online API. (Left) DWave uses the diamond 
representation, and encodes conforming couplings as blue, with anti-conforming 
couplings as red. A translucent black box encloses the user’s selection. Any 
encodings on the qubits themselves are cluttered. (Right) The detail view for the 
selected block of qubits. The values on each coupler and edge are specified, with 
the color encodings specified by the red-blue colormap. 

nodes, however that is not the case in every design decision, so we 
will refer to them directly as qubits in the following section.  

 

 
 
We have determined that set of axes that describe the design space of 
the physical graph:  

1. Representation of an individual qubit 
2. Representation of an intrablock coupler 
3. Representation of an interblock coupler 
4. Arrangement of qubits in a block 
5. Arrangement of blocks 

 
The dominant representations are as follows: 

6.1.1 Commonly Used Representation 
See Fig. 2 (right)  
Qubit: Point-Circle 
Internal coupling: Connection mark (straight line) 
External coupling: Connection mark (curved line) 
Arrangement of nodes in a block: 2 by 4 block with each column 
fully connected to opposite column 
Arrangement of blocks: Regular spaced grid with each block 
connected to its four neighbors, with the right column of each block 
having horizontal external edges, and the left hand column having 
vertical external edges. 
 

The above is a natural set of design decisions, but one that creates 
visual clutter and reduces clarity, especially in inter-block edges. 
 
 
Alternative design decisions include: 
 
 

 

 

6.1.2 Diamond Representation 
Qubit: Point (circle) 
Internal coupling: Connection mark (straight line) 
External coupling: Connection mark (curved line) 
Arrangement of nodes in a block:  
A four high and four wide cross in the vertical and horizontal 
directions. Each node in the horizontal line is connected to each node 
in the vertical line, and visa versa. Nodes in the vertical and 
horizontal lines do not share an edge. 
Arrangement of blocks:  
Regular spaced grid with each block connected to its four neighbors, 
with the right column of each block having horizontal external edges, 
and the left hand column having vertical external edges. 
 
This representation allows for more straight edges external to the 
qubit, at the cost of a slightly less regular arrangement. This is in 
general a better representation than the traditional one, however it do 
 

6.1.3 Qubit as Edge Representation 
Qubit: Connection mark (straight line) 
Internal coupling: Point mark (circle) 
External coupling: Point mark (circle) 
Arrangement of nodes in a block:  
A four by four grid of nodes representing couplers, with each 
connected to its four neighboring couplers by qubits. 
Arrangement of blocks: 
A regular square grid with connections between vertical and 
horizontal neighbors. 
This is an excellent set of design choices for reducing visual clutter. 
However, having the qubits as edges is unintuitive. The purpose of a 
solver is to assign values to qubits, and representations that do not 
place them as the focus of the visualization are penalized for that. An 
inversion of nodes and edges would be jarring for people who are 
used to qubits as nodes. For certain applications, the tradeoff 
between parsimony and comfort may be worth it, and this 
representation should be kept in mind for idioms with a focus on 
couplers. 
 



Fig. 12. The the overview in DWave’s online API. (Left) DWave 
uses the diamond representation, and encodes conforming 
couplings as blue, with anti-conforming couplings as red. A 
translucent black box encloses the user’s selection. Any encodings 
on the qubits themselves are cluttered. (Right) The detail view for 
the selected block of qubits. The values on each coupler and edge 
are specified, with the color encodings specified by the red-blue 
colormap. 

After considering the design decisions in present in the literature 
existence, we have decided to create a new idiom for use when 
visualizing larger graphs. The current qubit-as-node visualizations do 
not scale beyond the hundreds of nodes into the thousands. Past that 
point, it is difficult to discern the internal structure of the qubits, and 
there is a substantial amount of visual clutter.  
So we set out to design something that would have the clean 
representation of the qubit-as-edge representation, but without the 
potentially confusing representation. To get there, we sacrificed 
information on internal connectivity.  
 
 

6.1.4 Overview Representation 

 
 

Node: Point (ellipse) 
Internal edge: Not represented  
External edge: Connection mark (straight line) 
Arrangement of nodes in a block: 2 by 4 block, no spacing 
Arrangement of blocks: Regular spaced grid with each block 
connected to its four neighbors 
 
This representation treats each block as a single entity, ignoring 
internal connections entirely. By doing this, we are able to increase 
the relative size of each qubit. This is important for scalability and 
for continuing to encode information in each qubit, even in a 2000 
qubit overview as is the case for the current DWave annealer. 
 
For connections between blocks, we decided to not tie the connection 
to a single qubit, but rather to the block as a whole. In the most 
widely used representation, external edges often cross as they go 
from the right column of nodes to the left to connect with the 
neighboring block’s right column of nodes. Our representation 
avoids this, and is able to encode all external connections with 
straight lines. In addition, lines are laid out so that a line entering a 
block and exiting it from the opposite side will do so at the same 
location. This has the benefit of making lines easier to follow for 
users, especially across multiple blocks. The colors will need to be 
optimized to ensure that no two lines of the same colour enter the 
same block. Alternative identity channels to colour such as shape 
will also be considered.  
 
We considered encoding each qubit as a rectangle instead of an 
ellipse, as that would again maximize the size of each qubit. 
However, this may be too jarring for users, as it veers from the 

traditional representation. As future work, we will gather feedback 
on this decision. 
 
We considered encoding internal connections by coloring quarters of 
the internal semi circle of the node. Each quarter would represent 
whether a connection was present. This was not discernable at an 
overview and caused too much visual clutter to be worthwhile. We 
are not recommending this representation beyond as an overview. 
However, if this representation is extended for a more close-up view, 
encoding connections with quadrant will be explored further. 
 
We propose that as an overview, this representation is much stronger 
than the alternatives at understanding the connectivity of the physical 
graph as a whole. We propose that it also requires fewer and simpler 
cognitive tasks, such as following straight lines versus curved lines. 
Finally, we propose that it accomplishes these things while 
remaining easily recognized and understood by researchers used to 
the common representation. 
 
The remainder of this paper will discuss different multi-view 
visualizations that incorporate this overview representation of the 
physical graph. 
 

6.2 Broken Chain Vis 
As described in the domain overview, a single node in the original 
problem may be represented as multiple linearly connected nodes in 
the physical problem. This is because nodes in the original problem 
may have arbitrarily many edges, while a single node in the Chimera 
embedding may only have six edges. These nodes will all be biased 
towards the same outcome, either a one or a zero, and the edges will 
have strong conforming biases. These linearly connected nodes are 
referred to as a chain. Despite strong biases, these chains regularly 
break in real-world problems, and examining the reasons why is an 
area of active research. How prone a chain is to breaking can be 
conceptualized as stress in the same way as a stiff iron chain. If 
different links in the chain are being pulled opposite directions, then 
it creates areas of high stress and increases the likelihood of 
breaking. 
 
The leading components of stress on a chain are chain length and 
chain pattern. Maximum chain length was believed by 1QBit 
researchers to be the most important metric to minimize during the 
embedding process, but it is now believed that it is not just the 
maximum chain length that matters and that certain patterns of 
chains are more likely to result in the breaking of chains. For 
example, because chains are not local, one end can be strongly 
biased towards being up, while the other is biased towards being 
down. 
 
The key goal for this idiom will be to identify high-stress areas in an 
embedding, where stress is a combination of chain length and chain 
patterns. 
 
For this, we will follow Shneiderman’s helpful mantra of overview 
first, details on demand [11]. This means that the user should be 
given a helpful overview without overwhelming them with details. 
Only when the user asks for it should we give them details.  
 
To begin, we examine the closest approximation to a solution being 
used in practice, DrawChimera, an internal tool at 1QBit. 
 



 

Fig. 14. DrawChimera is a node-link diagram with qubits encoded as nodes and couplers encoded as links. The colour channel is 
used for to encode all of the following: Whether a node is broke, white in this example; whether a node is in disuse, grey; and what 
chain each used node is in, encoded with other colors. 

 
DrawChimera is a static idiom that attempts to both provide an 
overview along with the detail of which chain a given node belongs 
to. However, it is a poor idiom on many fronts. DrawChimera uses 
eight hues of similar saturations to encode chain membership, 
however there are very often n>>8 chains in the embedding. The 
decision to encode multiple chains with the same colour means this 
could lead to difficulty for users in identifying the entirety of a single 
chain. 
 
Chain length is not directly encoded. For example, in Fig. 5 it is not 
at all obvious that every chain pictured has a length of 14.  
 
Further, while DrawChimera allows the user to instantly recognize 
the areas of the solver being used, that is not a particularly important 
task, and it is hard to differentiate anything in the region that is being 
used. In Fig. 7, for example, it is difficult to perceive patterns within 
the top-right region of the graph.  
 
A key flaw in DrawChimera as it relates to the workflow of a 
researcher is that it does not attempt to encode the stress on the given 
chains. Thus, it does not effectively assist the user in make 
judgments pertaining to the quality of the chosen embedding.  
 
To improve on DrawChimera, we must first design a clear overview 
that accomplishes the following tasks. 

• Summarize the chain lengths present in an embedding 

• Identify areas of the graph for further investigation 
• Provide an at a glance understanding of where the largest 

chains are 
 
As with DrawChimera, we begin with a representation of the 
physical graph, however we will use the overview representation of 
the physical graph described in the previous section. 
 
The overview system will utilize a heatmap view alongside a view 
that directly encodes chains, as shown in Figure 7. A heatmap shows 
the concentration of some property in each region of the graph 
relative to the average. The heatmap will encode information about 
the chains present in the embedding based on a criterion chosen by 
the user. The direct encoding view will represent the longest chains 
as default, and the chains of interest when indicated by interaction 
with the heatmap view. 
 

6.2.1 Heatmap View 

 
 
The Chimera graph lends itself to a natural and meaningful 
segmentation for the heat map; the stress on a chain comes from the 
direct connections to other chains, and connections are densest 
within a block. Taking advantage of this natural structure, we will 
encode a single value for each block of eight nodes.  
 



Fig. 15. The direct encoding view (left), the heatmap view (middle), and the controls (right) of the proposed Broken Chain Vis. The direct encoding view 
shows chains above a certain length and is designed so that chains are easy to follow. For example, it is easy to follow the chain encoded in yellow from 
the bottom-left up, to the right, down, to the right again, and finally finishing one block below the top right block. The heatmap view here shows the 
average chain length for the nodes in each block, with red being dense and blue being sparse. This allows a quick overview of which blocks contain 
many nodes belonging to long chains. The sliders control what is encoded in the heatmap (top) and the threshold for chain viewing (bottom). 

There will be three toggleable options regarding what is encoded: 
1. Chain-length density  
2. Chains per block  

 
For chain-length density, we simply average the lengths of the chains 
that each node in the block belongs to. A chain may have multiple 
nodes in a single block, and they will be treated as separate nodes for 
the purpose of the calculation of the average performed in the 
visualization.  
 
Chains per block is a simple count of the number of separate chains 
in a block. A block that has a single chain making up four of its 
nodes will likely be less stressed than one where there are eight 
separate chains present. 
 

6.2.2 Direct Encoding View 
The second view will utilize the overview representation of the 
physical graph as described in the Overview Representation section. 
It is similar to the DrawChimera in that it directly encodes chains. 
However, it only encodes chains whose length are above a threshold 
which is determined by the user. By only showing the longest chains, 
we avoid the visual clutter of DrawChimera while retaining useful 
information. This is the at-a-glance overview of long, chains that was 
missing in DrawChimera. 
 
In addition, links unused by the longest chains will not be shown, 
where in DrawChimera they were displayed but greyed out. When 
viewed this way, more attention is called to the important chains, and 
it has the benefit of removing information that is not relevant. Work 
by us still needs to be done on ensuring that chains are easily 
followable even at scale. 

6.2.3 Summary Statistics 
In a smaller view of ours on the same screen (not pictured), a simple 
histogram would encode the distribution of chain lengths in the 
embedded graph. This will quickly show the user if there is a 
diversity in chain lengths, with a few outlier chains taking up many 
nodes, or whether, like in Fig. 5, most chains are of similar length. 
This benefits the user by showing the overall distribution of chain 
length, even when they are only seeing the longest chains. 
 

6.2.4 Interaction 
Using the linked highlighting interaction idiom, when moussing over 
a block in the heatmap view, all of the chains that pass through that 
block would be selected and highlighted in the direct encoding view. 
Clicking on the block would grey out all of the other chains, while 
persistently highlighting the associated chains until deselected. 
Multiple blocks may be selected at once.  
 
In addition, interaction would enhance the histogram. When blocks 
are selected, a second translucent histogram of a different color 
would be overlaid on the original histogram showing the distribution 
of chain lengths for the selected chains. 
 
This interaction allows for easy and immediate inspection of chains 
associated with high stress areas identified through the heat map 
view. It would show immediately chains that correspond to a high 
stress area, and how their lengths differ from the general distribution. 
 

6.2.5 Detailed view 

 
 
Detailed views are used to give the user more information on 
demand. Once chains of interest are selected, a user can right click 
on a chain to enter a detailed view on that chain. An example of a 
detailed view is shown in Figure 8.  
 
The proposed detailed view would feature a single horizontal chain, 
regardless of the chain’s orientation in the overview, with nodes and 
edges represented as point and connection marks as usual. Branches 
in chains would be directed perpendicular to the main chain. This 
will reduce crowding on branching chains. 



 

Fig. 15. The detailed view of the Broken Chain Vis. Each node in the 
chain is displayed in a horizontal line. Each node and link have a 
border thickness which represents the strength of the biases on 
them. The segmented columns underneath each node represent the 
external edges of each node. Here, each internal node has four 
external edge, while the two bookending nodes have five 
connections to non-chain nodes. The width of the segmented 
column represents the aggregate strength of the node’s links to non-
chain nodes. This allows the user to compare how at risk each node 
is for breaking the chain. The ratio of the strength of the external to 
the internal edge biases is directly shown on each node. A number 
above one means that the external edge biases are potentially 
stronger, which means that the node may be at risk for breaking the 
chain, and that is encoded with the color red. When a node is 
selected, summary statistics (top) show information about the biases 
which affect that node, as well as the id of the node. block. The 
heatmap view here shows the average chain length for the nodes in 
each block, with red being dense and blue being sparse. This allows 
a quick overview of which blocks contain many nodes belonging to 
long chains. The sliders control what is encoded in the heatmap 
(top) and the threshold for chain viewing (bottom). 

 

The chain will have biases potentially of varying strength, but all in 
the same direction. So whether it is biased to 1 or 0 is immaterial. 
The border thickness of the node will indicate the strength of the 
bias. Similarly, for intra-chain links, the bias will be to conform, 
however the thickness of the line will encode the strength. The same 
border and edge thicknesses map to the same bias value. This allows 
for easy and accurate comparison of relative bias strengths. 
 
The external edges will be represented as a single edge leaving each 
node. This collective edge would have the thickness equal to the total 
strength of the edge’s couplings, regardless of whether they are 
conforming or anti-conforming couplings. The length of the edge 
would be broken up into blocks with equal width and length 
proportional to the relative strength of each separate edge. The total 
length of each edge would be the same, though some edges may have 
more components than others. This means that we are using the 
strong magnitude channel of length for mark comparison. 
 
We emphasize that while it is possible for each extra-chain node to 
be pulling in directions that maximize the stress, this cannot yet be 
known. Instead, we concern ourselves with which node has the 
highest potential to be pulled. Each node will have written on it the 
ratio between the intra-chain bias strength and the extra-chain bias 
strength, with a higher ratio meaning that it has the potential to feel 
more stress from outside of the chain. In other words, the stronger 
the external strength, the more at risk the node is of breaking the 
chain 
 
When clicking on a node, the user will be presented with the 
specifics regarding the index of the node as well as the strengths of 
all the biases on the node. 
 

6.2.6 Scenario of Use 
This view would be used by a researcher that has embedded their 
problem, and wishes to see the results of that embedding. After 
uploading the data, they would see many chains as well as the 
heatmap. They would select a chain-length threshold high enough 
that they can easily follow the longer chains across blocks. Looking 
at the heatmap, they would identify a block that is particularly dense, 
and investigate the longest chain in that block by clicking on it. After 
seeing the detailed view, they realize that five consecutive nodes in 
that chain are at very high risk of being broken. After seeing this, the 
researcher realizes that this is not an acceptable embedding, and 
chooses another algorithm to create a new embedding of their 
problem. 
 
 Overall, this proposed system accomplishes the Rank 3 tasks 
identified in the task abstraction relating to chains, inspect patterns 
of chains for stability and discover the quality of an embedding. 
It has the potential to be an effective tool to aid in investigating 
embedding strategies. Validation of this system’s effectiveness will 
be conducted as future work by us at 1QBit. 

7 FUTURE WORK: VIEWS TO UTILIZE OVERVIEW 
REPRESENTATION 

The following are potential other use cases for the overview 
representation. They are not fully realized systems and have not been 
wireframed. However, they do highlight the wide applicability of the 
representation. 
 

7.1 Linked highlighting between the physical and logical 
graphs  

A relatively simple and oft requested visualization task is to 
understand the correspondence between a physical and logical graph. 
To accomplish this, we utilize the overview representation, as well as 
a representation of the logical problem. 
 
For the original problem, the size of the graph is up to ~2000, but as 
the edge density in the original graph increases, the potential size 
decreases as the limit on edges of ~5000 is reached. For example, the 
upper bound on embedding a fully connected graph is no more than 
100, and will often be much smaller. Due to these constraints on 
problem size, we can be comfortable using a simple force directed 
layout for the original graph. Users will also be able to upload their 
original graph with pre-specified two-dimensional node coordinates. 
Work into optimizing the planar embedding of an arbitrary graph is 
outside the scope of this paper.  
 
For the physical problem, we use the overview idiom with in-use 
nodes in use filled in, as well as chains between blocks. This 
overview representation is preferable for large problems for the 
reasons specified above, as it abstracts away already 
incomprehensible details. 
 
When some subsection of the original graph is highlighted, the 
chains corresponding to those logical nodes would be highlighted in 
the physical graph as well in the same way as in the broken chain vis. 
The converse is also true: Selecting nodes in the physical graph 
highlights nodes in the logical graph. 
 
This simple design allows for responsive linked highlighting, and 
enables users to investigate how features of their logical problem 
map to the physical problem. 
 



7.2 Fixing of qubits 
As discussed in Rank 2 of the task abstraction, a visual 
representation is useful in determining which qubits to fix when 
running a problem on DWave in the future. An easy way to extend 
the overview representation to deal with this problem is to fill in 
nodes should be fixed, given a threshold of how stable each qubit is 
across solutions. The threshold would be specified via a slider in the 
view.  
 
As nodes are fixed, their corresponding inter-group edges would be 
removed from the graph, highlighting areas that are still densely 
connected even for relatively fixed graphs. This allows for a simple 
way to see which areas of the graph are more amenable to being 
fixed, and since variables are fixed by coupler and not by qubit, the 
intra-block edges are not missed. 
 

7.3 Energy histograms and fair sampling 
 
Our proposed overview representation does not explicitly use 
information from the results of the solver, however the views which 
utilize it are often extensible to utilize solutions and that will be done 
as future work at 1QBit. 
 
It is not particularly difficult to extend the above linked highlighting 
system to include solutions. With information on which chains were 
broken, instead of coloring the logical nodes by the length of the 
associated chain, we would color the node by the percentage of the 
time the associated chain broke in the solution set. 
 
Additionally, we would display a histogram of the energy levels 
returned by the solver.  
One of the tasks was to gain information on whether DWave 
behaved as a fair sampler. A simple check of fair sampling is to see 
if each solution at the same energy level is seen at similar rates. 
Thus, we would encode each bin in the histogram with a color 
designating how far it deviates from a fair sampler. Clicking on a bin 
associated with an energy level would expand the bin in a separate 
view and show a bar chart which indicates how often each solution 
with that energy level occurs. In a fair sampler, they would occur 
equally often. Clicking on a single solution in that bar chart would 
cause that solution to be represented on the overview representation.  
 
Scaling in number of bins is not an issue, as generally there are less 
than 10 energy levels returned with any significant frequency. This 
view would give a quick idea of the energy distribution of the set of 
solutions, an important task in visualization. 
  
 
 
 

8 CONCLUSION 
 
Current methods of visualization are useful for gaining an intuition 
on the problems solved by quantum annealing researchers, however 
they are also problematic in the overwhelming amount of 
information presented at one time. Original research was used to 
guide this paper to improve on this visualization and give users an 
idea of the overall structure of the graph. At the same time, we allow 
the user to investigate areas of interest, providing them with even 
more detail through interactive layering of information in different 
views.  
 
Quantum annealing is a field with specific and novel challenges in 
visualization. However, it is served well by drawing from other 

fields and from information visualization in general, where best 
practices can be learned and expanded on. We discussed the data 
available for visualization, as well as an overview of potential tasks 
in the field along with some examples of how they have been 
accomplished. As our main contribution, we proposed a new 
overview representation for a physical graph where a less cluttered 
approach was taken. We then showed how it could be used in an 
integrated system of views by domain experts. Finally, we described 
future uses of this view. 
 
Visualization will continue to grow in importance in this domain, 
where intuition is still key to many aspects of research. Reducing the 
barriers to insight and understanding will be key focuses of 
visualization research in the field. The surface of the potential for 
visualization work is barely being scratched, as is the potential of the 
field in general.  
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APPENDIX 1 
Screenshots of survey questions: 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

Screenshot of an answer:  

 
  



APPENDIX 2 
Sample of notes from 1QBit unstructured interview with: 
“Logical heatmap very useful as well 
 
Length of chain, lots of metrics 
Pattern of chains is more important 
 
For example, many chains connected to one end points of a chain. 
One side pulls to 1, one to -1 
 
Research on embedding is a lot of intuition” 
 
 
 
 
 
 


