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Abstract—This paper presents ThreadViewer, a software performance debugging visualization tool for analyzing the behavior of a 

single thread in a multi-threaded execution.  ThreadViewer borrows heavily from our prior work in creating a suite of tools for software 

performance debugging.  Prior to ThreadViewer, we created two visualization tools designed to help engineers analyze execution 

traces: FlowViz and TimeSquared.  The intention was for engineers to use both of these tools together when doing performance 

debugging.  Therefore, the goal of ThreadViewer is to incorporate the visual encoding styles of both FlowViz and TimeSquared so 

that engineers do not have to use two tools just to debug the same execution trace. The biggest challenge of this project was figuring 

out a method of reducing the cardinality of execution traces so that engineers can smoothly transition between the FlowViz and 

TimeSquared visualizations.  Although ThreadViewer is still in development, it has proved useful in helping us critique the way we are 

reducing the cardinality of our execution traces. 

INTRODUCTION

Software performance debugging is a challenge problem often 
encountered by computer engineers.  A recent survey of 308 engineers 
revealed that 92% of them faced performance issues in the preceding 
year, with each issue taking on average 80 hours to solve.  However, 
the survey also found that some engineers encountered issues which 
took longer than a month to solve [1]. 

To assist engineers with performance debugging, my research 
group developed a suite of tools called DINAMITE: a tool kit for 
Dynamic Instrumentation and Analysis for Massive Trace 
Exploration.  DINAMITE includes tools for collecting and visualizing 
execution traces.  Two of the visualization tools available with 
DINAMITE are FlowViz and TimeSquared [9].  FlowViz and 
TimeSquared are designed to visualize execution traces that capture 
the function calls made by a multi-threaded execution.  FlowViz 
provides an overview of each thread’s behaviour while TimeSquared 
provides a detailed view of the threads’ executions.   

ThreadViewer is a software performance visualization tool born 
out of the realization that both FlowViz and TimeSquared should be 
used together to debug software performance.  The motivation behind 
creating ThreadViewer is to integrate FlowViz and TimeSquared 
together into one tool so that engineers can easily switch between them 
when doing performance debugging.  However, because FlowViz and 
TimeSquared work on the extreme opposite ends of the data scale, 
ThreadViewer needs to provide an intermediate visualization step 
between the two visualizations; this step is essentially the “zoom” part 
of the mantra of “Overview First, Zoom, Details on Demand”.  This 

project focused on the development of the intermediate visualization 
step between FlowViz and TimeSquared.  The biggest challenge was 
coming up with a method of reducing the cardinality of our execution 
traces so that they can viewed at a scale in between the overview and 
detail level.      

Ideally, ThreadViewer would be able to assist engineers in 
analysing all threads in a program execution at the same time.  
However, as a starting point for development, I chose to design 
ThreadViewer so that it can only be used to analyse one thread.  
The remainder of this paper is organized as follows: 
Section 1 provides details about DINAMITE and discusses why 
without ThreadViewer, engineers cannot use FlowViz and 
TimeSquared together to do performance debugging.  Section 2 
discusses the dataset used to develop ThreadViewer and the technique 
I employed to reduce the dataset’s cardinality.  Section 3 lists the 
domain tasks which ThreadViewer supports.  Section 4 describes the 
design of ThreadViewer.  Section 5 outlines how ThreadViewer was 
implemented.  Section 6 evaluates the effectiveness of ThreadViewer.  
Section 7 discusses the insights that we gained from using 
ThreadViewer.  Section 8 lists the future work.  Section 9 compares 
ThreadViewer to related work.  Section 10 ends with a summary of 
my work. 



1. PRIOR WORK  

This section describes the data abstraction of DINAMITE traces as 

well as the FlowViz and TimeSquared visualizations.  This section 

also details the problems that my research group encounter when 

trying to use FlowViz and TimeSquared together to analyze program 

executions.   

1.1 Data Abstraction of DINAMITE Traces 

When configured to trace functions, DINAMITE generates two 

records each time a thread in a multi-threaded program makes a 

function call.  One record contains information about when the 

thread entered into the function call while the other record contains 

information about when the thread exited the function call.  The 

attributes contained in each record are shown in Table 1 below: 

 

Attribute Attribute Type Description 

Function Categorical The name of the 

function being 

called 

Direction Categorical Indicates if the 

record represents a 

function entry or 

exit 

Thread ID Categorical Identifies the thread 

which either 

entered or exited 

the function call 

Time Ordered, 

quantitative 

The time when the 

thread either 

entered or exited 

the function call 

Table 1. The attributes of a record generated by DINAMITE 

1.2 FlowViz 

For each thread in a multi-threaded program, FlowViz generates an 

execution flow diagram capturing that thread’s behavior.  The 

execution flow diagram is a state transition graph, where the states 

represent function entries and exits.  Figure 1 shows an execution 

flow diagram of a thread in RocksDB, a key-value store used by 

Facebook. 

Each function call is represented by two nodes: one capturing the 

state of the thread entering the function call and the other node 

capturing the state of the thread exiting the function call.  The nodes’ 

color saturation level encodes the percentage of the thread’s 

execution time that the corresponding function occupied.  For 

instance, Figure 1 shows that the pair of nodes which represent the 

call to the function rocksdb::DBImpl::MultiGet(*) have full color 

saturation, meaning that the thread spent the majority of its execution 

time in rocksdb::DBImpl::MultiGet(*).   

The directed edges between the nodes show transitions between 

the function call entries and exits that the thread made throughout its 

execution time.  The edges are weighted according to how many 

times the transitions occurred.   

My research group uses FlowViz diagrams to gain an overall 

understanding of the behavior and performance of a program 

execution.  We have successfully used FlowViz diagrams to help 

engineers at Facebook discover a scalability bottleneck on RocksDB 

[9].  However, because we cannot use FlowViz diagrams to explore 

an execution over time, DINAMITE also provides the TimeSquared 

visualization tool. 

1.3 TimeSquared 

TimeSquared is a visualization tool which displays the threads’ 

callstacks on a horizontal timeline.  Figure 2 shows an example of a 

timeline of a program execution created by TimeSquared.  Each 

thread’s callstack is shown on a separate row in the timeline. 

TimeSquared uses line marks to represent function calls.  The color 

hue channel encodes the different function attribute levels.  The 

horizontal spatial positioning channel encodes the start time of the 

function calls while the horizontal length channel encodes the 

durations of the function calls.  Compared to the FlowViz execution 

diagrams, TimeSquared provides a detailed view of an execution.  

For example, engineers using TimeSquared can see precisely when 

threads have entered or exited function calls.  

 

Figure 1. FlowViz execution flow diagram 

Figure 2. Timeline view of an execution trace provided by 
TimeSquared 



1.4 Using FlowViz and TimeSquared Together 

FlowViz and TimeSquared exist as separate tools so engineers 

cannot conveniently switch between them when doing performance 

debugging.  Additionally, because FlowViz execution diagrams do 

not encode the time attribute, engineers cannot use FlowViz to 

determine which parts of an execution they should examine more 

closely with TimeSquared.  For instance, suppose an engineer using 

FlowViz sees that a function is taking up an unexpectedly large 

percentage of a thread’s execution time.  The engineer would like to 

examine the calls made to that function in TimeSquared but FlowViz 

does not show the times when the function calls occurred in the 

execution.  Consequently, the engineer does not know which time 

intervals in the program execution to examine with TimeSquared.   

To help engineers switch from looking an execution trace with 

FlowViz to looking at an execution trace with TimeSquared, 

ThreadViewer needs to provide an intermediate visualization step 

between the FlowViz and TimeSquared visualizations.  This 

intermediate visualization step requires that I develop a method of 

reducing the cardinality of our execution traces. 

2 DATA 

The dataset I used for this project is a DINAMITE trace containing 

22 seconds of one thread’s activity in WiredTiger, a key-value store 

used by MongoDB.  This dataset contains approximately 11 million 

function entry and exit records, as well as 20 different function 

attribute levels.  Additionally, the time attribute has a resolution 

measured in nanoseconds.  

The following sections discuss how I reduced my dataset’s 

cardinality.  

2.1 Reducing Dataset Cardinality 

To reduce the cardinality of this dataset, I exploited the fact that 

threads tend to execute the same sequences of functions repeatedly.  

For example, a thread could be repeatedly trying to acquire the same 

lock on a shared resource.  Thus, it is possible to summarize a 

thread’s entire execution as a finite set of “execution patterns”, 

sequences of function call entries and exits that a thread makes 

repeatedly throughout its execution time. 

2.1.1 Finding Execution Patterns with Sequitur 

To find these execution patterns, I borrowed an idea proposed in a 

paper written by Walkinshaw et al.  This paper suggested that an 

algorithm called Sequitur could be used to find phases of repeating 

behavior in a single thread [7].   

The Sequitur algorithm was developed by Nevill-Manning and 

Witten to infer compositional hierarchies in a string of discrete 

symbols.  Sequitur produces context free grammar.  A context free 

grammar is defined as G = (Ʃ, N, S, P), where 

 Ʃ is a finite set of terminals, which are the set of symbols 

belonging to the underlying language 

 N is a finite set of non-terminals, where each non-terminal 

is a set of sequences of terminals 

 S is a single non-terminal which represents the starting 

point of the language 

 P is a set of production rules that map a non-terminal to a 

string of zero or more terminals and non-terminals. 

 

Walkinshaw et al suggested that an execution trace containing an 

ordered list of function call entries could be represented as a string of 

discrete symbols and fed into Sequitur.  Figure 3 is an example taken 

from Walkinshaw et al demonstrating how they converted a toy 

execution trace into a string. 

The Sequitur output of the execution trace in Figure 3 is shown 

in Figure 4 below:    

 

 

In Figure 4, Sequitur produced 6 production rules, with rule 0 being 

the initial rule S.  Walkinshaw et al treated rule 0 as a representation 

of the complete execution trace, with the other rules representing 

patterns and sub-patterns within that trace. 

2.1.2 Applying Sequitur to the Dataset 

For this project, I used an open source implementation of the 

Sequitur algorithm [8].  However, one problem I encountered with 

using Sequitur to find execution patterns is that threads often make 

thousands of consecutive calls to the same function which causes 

Sequitur to produce patterns with un-necessarily deep hierarchies.  I 

therefore modified the Sequitur algorithm such that the patterns 

generated from consecutive calls to the same function have minimal 

depth.   

Because Sequitur is designed for finding patterns in strings of 

discrete symbols, I needed to create a string representation of my 

dataset.  I created a string representation of my dataset by applying 

two steps: 

 

1) Order the records by the time attribute in ascending order 

 

2) Remove the time attribute from each record, leaving an 

ordered list of records which only contained the direction 

and function attributes.  The combinations of the direction 

and function attribute values form the symbols.  For 

example, “enter function __wt_evict_walk” is one symbol 

while “exit function __wt_evict_walk” is another symbol. 

 

 

Figure 3. Example of string representation of an execution trace [7] 

Figure 4. Sequitur output of the trace in Figure 3 [7] 



Using Sequitur, I was able to identify 7919 patterns in my dataset 

which contained 11 million items.  The patterns also had a maximum 

depth of 116, despite the modification I made to the Sequitur 

algorithm to minimize the pattern depth.   

I confirmed with the members of my research group that they 

were uninterested in exploring the hierarchy of patterns down to the 

terminals, especially because the patterns had such high depth.  

Consequently, I decided to flatten the hierarchy of the Sequitur 

output by “expanding” all production rules apart from rule 0 to their 

terminals; instead of having patterns consisting of sub-patterns, all 

patterns simply became sequences of function call entries and exits.   

2.1.3 Time Attributes of the Execution Patterns 

Although I now had a reduced dataset consisting of execution 

patterns, the reduced dataset had no time attribute; ThreadViewer 

users therefore would not have been able to use the TimeSquared 

visualizations to examine the patterns in detail.  To address this 

issue, I wrote a Python script which found the times when the 

patterns appeared in my original dataset.  

The script works by traversing through the sequence of terminals 

and patterns making up rule 0.  Whenever the script finds a pattern, 

the script calculates the start and end times of that pattern based on 

its position within rule 0 and the number of terminals forming that 

pattern.  For example, suppose that the first item in rule 0 is a pattern 

with five terminals.  The start time of that pattern is the time attribute 

value of the first record in the dataset while the end time is the time 

attribute value of the sixth record in the dataset.   

3 TASKS  

I consulted with members of my research group to determine the 

domain tasks which ThreadViewer will support.  We decided that 

ThreadViewer will support the following tasks: 

 

1) Discovering which patterns dominated a thread’s execution 

time 

2) Discovering when the thread executed the patterns 

3) Browsing the function call entries and exits which make up 

a given pattern 

4 SOLUTION  

ThreadViewer is divided into two panels.  The TimeView panel uses 
a bar graph and timeline to show which patterns dominated the 
execution time and when the thread executed these patterns.  The 
FlowViz panel is used to display the FlowViz execution flow diagram 
and show the function call entries and exits which make up a given 
pattern.   

 

4.1 The TimeView Panel 

Figure 5 provides a screenshot of the TimeView panel.  

ThreadViewer employs a vertical bar graph to display the percentage 

of a thread’s execution time that each pattern occupies.  The bar 

graph is always sorted in descending order so that users can 

immediately see which patterns dominated the execution time.  To 

the right of the bar graph are the timelines showing when the thread 

executed the patterns; ThreadViewer provides each pattern with its 

own timeline because it would not have been practical to show all 

7919 patterns together on the same timeline.  Each pattern’s timeline 

is aligned next to that pattern’s bar in the bar graph so that users can 

see all of the information about a pattern in the TimeView panel with 

minimal eye movement. 

To ensure that the timelines could fit into the TimeView panel, 

ThreadViewer sets the timelines’ default unit of distance to be one 

second.  However, as mentioned in section 2, the time attribute has 

nanosecond resolution.  Thus, ThreadViewer provides users with the 

ability to navigate and zoom into the timelines.  The purpose of 

providing users with the ability to zoom into the timelines is so that 

they can precisely locate the time intervals when patterns of interest 

occur.  The idea is that once users have navigated to a time interval 

they are interested in examining more closely, they can pull up 

TimeSquared to get a detailed view of the time interval.  However, at 

the time I wrote this paper, I have not yet integrated TimeSquared 

visualizations into ThreadViewer. 

All of the timelines share two axes: the top axis displays 

precisely the time interval that the users have zoomed into while the 

bottom axis provides orientation.  Users can zoom into the timeline 

either by brushing the timelines themselves or by manipulating the 

bar on the bottom axis.   

4.2 The FlowViz Panel 

The FlowViz execution diagram appears by default in the FlowViz 

panel because users will first wish to look at the execution flow 

diagram to get an overall understanding of how the thread is 

behaving.  However, when users click on a pattern’s row in the 

vertical bar graph, the FlowViz panel displays the function call 

entries and exits making up that pattern.  

FlowViz execution flow diagrams are a way of visualizing 

DINAMITE traces without the time attribute.  Execution patterns are 

just subsets of these traces without the time attribute.  Thus, 

ThreadViewer displays the execution patterns as subsets of the full 

FlowViz execution flow diagram.  Figure 6 shows the full execution 

flow diagram of my dataset while Figure 7 shows an execution 

pattern as a subset of the same execution flow diagram.  When users 

click on a row in the vertical bar graph, the FlowViz panel removes 

color from the nodes which are not a part of the pattern.  

Additionally, the FlowViz panel highlights in red the transitions 

which occurred within a pattern.  Each highlighted transition has two 

weights: the first weight represents the number of times that 

transition occurred in the execution pattern and the second weight 

represents the number of times that transition occurred throughout 

the entire thread execution.  

When displaying the function call entries and exits within a 

pattern, ThreadViewer could theoretically remove the irrelevant 

nodes and edges from the FlowViz panel to save screen real estate.  

However, the members of my research group stated that if they are 

using ThreadViewer, they would likely switch between viewing the 

full execution flow diagram and viewing the patterns.  Therefore, to 

maintain mental context, ThreadViewer does not alter the layouts of 

the nodes and edges in the FlowViz panel.   

The advantage of using the FlowViz visual encoding style to 

display the function call entries and exits of each pattern is that the 

visualizations on the left panel remain the same size.  Regardless of 

how big the patterns are; the execution patterns will always be 

smaller than the full execution flow diagram.   

5 IMPLEMENTATION  

Because our research group developed FlowViz and TimeSquared 

visualizations to be viewed on a web browser, I also designed 

ThreadViewer to be viewed on a web browser.  I built ThreadViewer 

using html, Javascript, and the D3 library.  I constructed the 

timelines in the TimeView panel out of a single SVG.  The FlowViz 

execution diagrams are stored on ThreadViewer as PNG files.     

6 RESULTS  

I presented ThreadViewer to members of my research group so that 

they could provide feedback on ThreadViewer’s effectiveness.  My 

research group said that visualizing the execution patterns as subsets 

of the FlowViz execution flow diagram helped them easily 

understand what the thread was doing within each pattern.  

Additionally, my research group found the link navigation of the 



 

  

 
 

Figure 5.  The TimeView panel of ThreadView

Figure 6. A thread’s full execution flow diagram Figure 7. A pattern which the thread executed 



 

timelines to be very convenient to use.  However, my research group 

also noted that without having the patterns sharing the same timeline, 

it was difficult to see the order in which the thread executed the 

patterns.  My research group also stated that ThreadViewer needs to 

support more domain tasks if it is to be an effective software 

performance debugging tool.  For example, after viewing the 

execution patterns in the FlowViz view, my research group wanted 

to know which patterns were most and least likely to appear 

sequentially together in the thread’s execution.       

6.1 Scenario Walkthrough 

 Jim is a computer engineer who is using ThreadViewer to analyze 

the behavior of a thread in his multi-threaded program.  He first 

looks at the full execution flow diagram in the FlowViz panel to get 

a general understand of how the thread is behaving.  He then looks at 

the bar graph in the TimeView panel to see the percentages of the 

thread’s execution time that each pattern occupied.  He decides that 

he is interested in studying the pattern which took up the most 

execution time.  Thus, he selects the first row in the bar graph and 

inspects the highlighted nodes and edges in the FlowViz panel.  

From studying the execution pattern in the FlowViz panel, he 

observes that the thread is behaving abnormally.  He therefore looks 

at the pattern’s timeline to see when the thread is executing this 

pattern.  He zooms into one part of the timeline which shows the 

thread executing that pattern.  He decides that he wants to view this 

part of the thread execution in detail so he clicks a button on 

ThreadViewer to bring up the TimeSquared visualization on a 

separate window. 

7 DISCUSSION  

ThreadViewer is in early development and is not ready to be used for 

performance debugging.  However, my research group was able to 

use ThreadViewer to discover problems with the way the Sequitur 

algorithm detects execution patterns.  These discoveries excited 

vigorous discussions within our research group about how to modify 

Sequitur to address these problems and even if we should create our 

own pattern detection algorithm.  This section describes the 

problems with the Sequitur algorithm that members of my research 

group found using ThreadViewer. 

 

7.1 Execution Patterns with a Small Number of Nodes 

Viewing the execution patterns in the FlowViz panel showed that 

some execution patterns detected by Sequitur would be of no interest 

to engineers because they contained an extremely small number of 

function call entries and exits.  For example, Figure 8 shows a 

pattern which only captured a single call to the function 

__wt_spin_trylock::0xb54010.   

 

 

7.2 Execution Patterns Capturing Incomplete Function 
Calls 

Viewing the execution patterns in the FlowViz panel also showed 

that some patterns do not contain complete pairs of function call 

entries and exits.  Figure 9 shows an execution pattern in which a 

thread exited a call to the function __wt_evict_walk without entering 

it.  These execution patterns would be very confusing to 

ThreadViewer users.   

 

 

Figure 9. An execution pattern showing the thread exiting a function 
call to __evict_walk without entering it 

7.3 Low Percentages of Execution Time 

The bar graph in the TimeView panel shows that the vast majority of 

the execution patterns occupy less than 1 percent of the thread’s 

execution time.  However, it is likely that ThreadViewer is under-

reporting the execution time percentages because I flattened the 

hierarchy of the Sequitur output and only looked at pattern 

occurrences in rule 0; it is probable that patterns only appear a few 

times in rule 0 but appear numerous times as sub-patterns within 

other patterns.      

8 FUTURE WORK  

Because of the discoveries my research group made with 

ThreadViewer, I intend to either modify the Sequitur algorithm to 

locate more meaningful execution patterns or develop my own 

pattern detection algorithm.  Improving our pattern detection strategy 

will also help us reduce the dataset cardinality even further.  For 

example, constraining Sequitur to only create patterns with complete 

pairs of function call entries and exits will reduce the number of 

patterns that Sequitur can detect.  If we are able to reduce the 

cardinalities of all DINAMITE traces to a small number of patterns, 

it may be possible to fit all of the patterns onto a single timeline.  

Thus, ThreadViewer users will be able to see the order in which the 

thread executed the patterns.  Reducing the dataset cardinality also 

has the benefit of making the navigation of the timeline more 

responsive.   

The visual encoding styles used in FlowViz also needs 

improvement.  For instance, FlowViz should use line width channels 

to communicate edge weights as opposed to number labels.  FlowViz 

also communicates the direction attribute of each state using labels.  

I would like to explore using node shapes to encode the direction 

attribute: nodes with one shape represent function call entries while 

nodes with another shape represent function call exits. 

9  RELATED WORK  

Visualization of execution traces is a well-researched field.  Most 

approaches for serial trace visualization involve assigning one of the 

axes the time variable while the other axis is used to represent 

different processes, classes, instructions, or methods [6] Tools like 

TimeSquared which adopt this visualization scheme can only display 

fractions of the total program execution duration.  Other 

visualization tools provide an overview of the execution trace and 

allow users to zoom in on parts of the trace for more 

details.  Extravis is a tool which uses a “massive sequence view” to 

Figure 8. An execution pattern 
containing only one function call 



show an overview of an execution and a “circular view” to show the 

interactions between the components of a program [4].  Synctrace is 

another tool which draws a serial timeline overview of a selected 

thread and shows the call stacks of different threads in the context 

view [3].  However, the visualization approaches adopted by both 

Extravis and Synctrace are not scalable for large traces. 

There is also research into how to detect and visualize execution 

trace patterns.  Knüpfer et al used complete call graphs to detect 

trace patterns and proposed how the Vampir GUI performance tool 

could visualize these patterns [2].  However, Knüpfer et al focused 

primarily on creating the pattern detection algorithm and did not 

perform any analysis on how feasible their visualization encoding 

ideas were. 

Our approach to visualizing execution patterns is similar to the 

visual encoding schemes used by visualize genomic data.  From a 

data abstraction perspective, execution traces and genomes are very 

similar datasets.  Genes are long sequences of nucleotides while 

execution traces are long sequences of execution events.  Moreover, 

genomes have larger cardinality than our execution traces.  The 

human genome, for instance, contains approximately 3 billion 

nucleotides; in contrast, our execution traces only contain millions of 

events.  Therefore, the visualization techniques employed by genome 

browsers can accommodate the typical sizes of our execution traces.  

Rather than simply visualizing the entire genome, genome 

browsers allow users to study individual genes [10].  Genes are 

approximately 10,000 nucleotides in length, and there are 

approximately 20,000 genes in the human genome.  Thus, 

visualizing a single gene is a more tractable infovis problem than 

visualizing an entire genome at once.  Some visualization tools for 

analyzing genomic data also use derived attributes to guide users to 

the most relevant genes they are interested in studying [5].  Similar 

to these tools, we chose to visualize individual execution patterns 

instead of displaying the entire execution trace.  Additionally, 

ThreadViewer also has derived attributes which guide users to the 

most interesting execution patterns.   

10  CONCLUSION  

I present ThreadViewer, a visualization tool for analyzing a thread in 

a program execution.  This tool uses the FlowViz visualization to 

provide an overview of a thread’s behavior and presents users with 

the different patterns of behavior that occurred in the thread’s 

execution.  A bar graph shows which patterns dominated the thread’s 

execution time while a timeline provides users with the ability to see 

precisely when the patterns occurred in the execution.  Once users 

have identified sections of the execution that they would like to 

examine more closely, they can view those sections in detail using 

TimeSquared.  However, TimeSquared has yet to be integrated into 

ThreadViewer. 

Although ThreadViewer is still in the early stage of 

development, it has already revealed problems with the way we are 

detecting execution patterns.  I will continue to use ThreadViewer to 

evaluate the effectiveness of any future pattern detection strategies 

that I create. 
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