

ThreadViewer: Visualizing a Thread’s Behavior in a Program

Execution

Augustine Wong

Abstract—This paper presents ThreadViewer, a software performance debugging visualization tool for analyzing the behavior of a

single thread in a multi-threaded execution. ThreadViewer borrows heavily from our prior work in creating a suite of tools for software

performance debugging. Prior to ThreadViewer, we created two visualization tools designed to help engineers analyze execution

traces: FlowViz and TimeSquared. The intention was for engineers to use both of these tools together when doing performance

debugging. Therefore, the goal of ThreadViewer is to incorporate the visual encoding styles of both FlowViz and TimeSquared so

that engineers do not have to use two tools just to debug the same execution trace. The biggest challenge of this project was figuring

out a method of reducing the cardinality of execution traces so that engineers can smoothly transition between the FlowViz and

TimeSquared visualizations. Although ThreadViewer is still in development, it has proved useful in helping us critique the way we are

reducing the cardinality of our execution traces.

INTRODUCTION

Software performance debugging is a challenge problem often
encountered by computer engineers. A recent survey of 308 engineers
revealed that 92% of them faced performance issues in the preceding
year, with each issue taking on average 80 hours to solve. However,
the survey also found that some engineers encountered issues which
took longer than a month to solve [1].

To assist engineers with performance debugging, my research
group developed a suite of tools called DINAMITE: a tool kit for
Dynamic Instrumentation and Analysis for Massive Trace
Exploration. DINAMITE includes tools for collecting and visualizing
execution traces. Two of the visualization tools available with
DINAMITE are FlowViz and TimeSquared [9]. FlowViz and
TimeSquared are designed to visualize execution traces that capture
the function calls made by a multi-threaded execution. FlowViz
provides an overview of each thread’s behaviour while TimeSquared
provides a detailed view of the threads’ executions.

ThreadViewer is a software performance visualization tool born
out of the realization that both FlowViz and TimeSquared should be
used together to debug software performance. The motivation behind
creating ThreadViewer is to integrate FlowViz and TimeSquared
together into one tool so that engineers can easily switch between them
when doing performance debugging. However, because FlowViz and
TimeSquared work on the extreme opposite ends of the data scale,
ThreadViewer needs to provide an intermediate visualization step
between the two visualizations; this step is essentially the “zoom” part
of the mantra of “Overview First, Zoom, Details on Demand”. This

project focused on the development of the intermediate visualization
step between FlowViz and TimeSquared. The biggest challenge was
coming up with a method of reducing the cardinality of our execution
traces so that they can viewed at a scale in between the overview and
detail level.

Ideally, ThreadViewer would be able to assist engineers in
analysing all threads in a program execution at the same time.
However, as a starting point for development, I chose to design
ThreadViewer so that it can only be used to analyse one thread.
The remainder of this paper is organized as follows:
Section 1 provides details about DINAMITE and discusses why
without ThreadViewer, engineers cannot use FlowViz and
TimeSquared together to do performance debugging. Section 2
discusses the dataset used to develop ThreadViewer and the technique
I employed to reduce the dataset’s cardinality. Section 3 lists the
domain tasks which ThreadViewer supports. Section 4 describes the
design of ThreadViewer. Section 5 outlines how ThreadViewer was
implemented. Section 6 evaluates the effectiveness of ThreadViewer.
Section 7 discusses the insights that we gained from using
ThreadViewer. Section 8 lists the future work. Section 9 compares
ThreadViewer to related work. Section 10 ends with a summary of
my work.

1. PRIOR WORK

This section describes the data abstraction of DINAMITE traces as

well as the FlowViz and TimeSquared visualizations. This section

also details the problems that my research group encounter when

trying to use FlowViz and TimeSquared together to analyze program

executions.

1.1 Data Abstraction of DINAMITE Traces

When configured to trace functions, DINAMITE generates two

records each time a thread in a multi-threaded program makes a

function call. One record contains information about when the

thread entered into the function call while the other record contains

information about when the thread exited the function call. The

attributes contained in each record are shown in Table 1 below:

Attribute Attribute Type Description

Function Categorical The name of the

function being

called

Direction Categorical Indicates if the

record represents a

function entry or

exit

Thread ID Categorical Identifies the thread

which either

entered or exited

the function call

Time Ordered,

quantitative

The time when the

thread either

entered or exited

the function call

Table 1. The attributes of a record generated by DINAMITE

1.2 FlowViz

For each thread in a multi-threaded program, FlowViz generates an

execution flow diagram capturing that thread’s behavior. The

execution flow diagram is a state transition graph, where the states

represent function entries and exits. Figure 1 shows an execution

flow diagram of a thread in RocksDB, a key-value store used by

Facebook.

Each function call is represented by two nodes: one capturing the

state of the thread entering the function call and the other node

capturing the state of the thread exiting the function call. The nodes’

color saturation level encodes the percentage of the thread’s

execution time that the corresponding function occupied. For

instance, Figure 1 shows that the pair of nodes which represent the

call to the function rocksdb::DBImpl::MultiGet(*) have full color

saturation, meaning that the thread spent the majority of its execution

time in rocksdb::DBImpl::MultiGet(*).

The directed edges between the nodes show transitions between

the function call entries and exits that the thread made throughout its

execution time. The edges are weighted according to how many

times the transitions occurred.

My research group uses FlowViz diagrams to gain an overall

understanding of the behavior and performance of a program

execution. We have successfully used FlowViz diagrams to help

engineers at Facebook discover a scalability bottleneck on RocksDB

[9]. However, because we cannot use FlowViz diagrams to explore

an execution over time, DINAMITE also provides the TimeSquared

visualization tool.

1.3 TimeSquared

TimeSquared is a visualization tool which displays the threads’

callstacks on a horizontal timeline. Figure 2 shows an example of a

timeline of a program execution created by TimeSquared. Each

thread’s callstack is shown on a separate row in the timeline.

TimeSquared uses line marks to represent function calls. The color

hue channel encodes the different function attribute levels. The

horizontal spatial positioning channel encodes the start time of the

function calls while the horizontal length channel encodes the

durations of the function calls. Compared to the FlowViz execution

diagrams, TimeSquared provides a detailed view of an execution.

For example, engineers using TimeSquared can see precisely when

threads have entered or exited function calls.

Figure 1. FlowViz execution flow diagram

Figure 2. Timeline view of an execution trace provided by
TimeSquared

1.4 Using FlowViz and TimeSquared Together

FlowViz and TimeSquared exist as separate tools so engineers

cannot conveniently switch between them when doing performance

debugging. Additionally, because FlowViz execution diagrams do

not encode the time attribute, engineers cannot use FlowViz to

determine which parts of an execution they should examine more

closely with TimeSquared. For instance, suppose an engineer using

FlowViz sees that a function is taking up an unexpectedly large

percentage of a thread’s execution time. The engineer would like to

examine the calls made to that function in TimeSquared but FlowViz

does not show the times when the function calls occurred in the

execution. Consequently, the engineer does not know which time

intervals in the program execution to examine with TimeSquared.

To help engineers switch from looking an execution trace with

FlowViz to looking at an execution trace with TimeSquared,

ThreadViewer needs to provide an intermediate visualization step

between the FlowViz and TimeSquared visualizations. This

intermediate visualization step requires that I develop a method of

reducing the cardinality of our execution traces.

2 DATA

The dataset I used for this project is a DINAMITE trace containing

22 seconds of one thread’s activity in WiredTiger, a key-value store

used by MongoDB. This dataset contains approximately 11 million

function entry and exit records, as well as 20 different function

attribute levels. Additionally, the time attribute has a resolution

measured in nanoseconds.

The following sections discuss how I reduced my dataset’s

cardinality.

2.1 Reducing Dataset Cardinality

To reduce the cardinality of this dataset, I exploited the fact that

threads tend to execute the same sequences of functions repeatedly.

For example, a thread could be repeatedly trying to acquire the same

lock on a shared resource. Thus, it is possible to summarize a

thread’s entire execution as a finite set of “execution patterns”,

sequences of function call entries and exits that a thread makes

repeatedly throughout its execution time.

2.1.1 Finding Execution Patterns with Sequitur

To find these execution patterns, I borrowed an idea proposed in a

paper written by Walkinshaw et al. This paper suggested that an

algorithm called Sequitur could be used to find phases of repeating

behavior in a single thread [7].

The Sequitur algorithm was developed by Nevill-Manning and

Witten to infer compositional hierarchies in a string of discrete

symbols. Sequitur produces context free grammar. A context free

grammar is defined as G = (Ʃ, N, S, P), where

 Ʃ is a finite set of terminals, which are the set of symbols

belonging to the underlying language

 N is a finite set of non-terminals, where each non-terminal

is a set of sequences of terminals

 S is a single non-terminal which represents the starting

point of the language

 P is a set of production rules that map a non-terminal to a

string of zero or more terminals and non-terminals.

Walkinshaw et al suggested that an execution trace containing an

ordered list of function call entries could be represented as a string of

discrete symbols and fed into Sequitur. Figure 3 is an example taken

from Walkinshaw et al demonstrating how they converted a toy

execution trace into a string.

The Sequitur output of the execution trace in Figure 3 is shown

in Figure 4 below:

In Figure 4, Sequitur produced 6 production rules, with rule 0 being

the initial rule S. Walkinshaw et al treated rule 0 as a representation

of the complete execution trace, with the other rules representing

patterns and sub-patterns within that trace.

2.1.2 Applying Sequitur to the Dataset

For this project, I used an open source implementation of the

Sequitur algorithm [8]. However, one problem I encountered with

using Sequitur to find execution patterns is that threads often make

thousands of consecutive calls to the same function which causes

Sequitur to produce patterns with un-necessarily deep hierarchies. I

therefore modified the Sequitur algorithm such that the patterns

generated from consecutive calls to the same function have minimal

depth.

Because Sequitur is designed for finding patterns in strings of

discrete symbols, I needed to create a string representation of my

dataset. I created a string representation of my dataset by applying

two steps:

1) Order the records by the time attribute in ascending order

2) Remove the time attribute from each record, leaving an

ordered list of records which only contained the direction

and function attributes. The combinations of the direction

and function attribute values form the symbols. For

example, “enter function __wt_evict_walk” is one symbol

while “exit function __wt_evict_walk” is another symbol.

Figure 3. Example of string representation of an execution trace [7]

Figure 4. Sequitur output of the trace in Figure 3 [7]

Using Sequitur, I was able to identify 7919 patterns in my dataset

which contained 11 million items. The patterns also had a maximum

depth of 116, despite the modification I made to the Sequitur

algorithm to minimize the pattern depth.

I confirmed with the members of my research group that they

were uninterested in exploring the hierarchy of patterns down to the

terminals, especially because the patterns had such high depth.

Consequently, I decided to flatten the hierarchy of the Sequitur

output by “expanding” all production rules apart from rule 0 to their

terminals; instead of having patterns consisting of sub-patterns, all

patterns simply became sequences of function call entries and exits.

2.1.3 Time Attributes of the Execution Patterns

Although I now had a reduced dataset consisting of execution

patterns, the reduced dataset had no time attribute; ThreadViewer

users therefore would not have been able to use the TimeSquared

visualizations to examine the patterns in detail. To address this

issue, I wrote a Python script which found the times when the

patterns appeared in my original dataset.

The script works by traversing through the sequence of terminals

and patterns making up rule 0. Whenever the script finds a pattern,

the script calculates the start and end times of that pattern based on

its position within rule 0 and the number of terminals forming that

pattern. For example, suppose that the first item in rule 0 is a pattern

with five terminals. The start time of that pattern is the time attribute

value of the first record in the dataset while the end time is the time

attribute value of the sixth record in the dataset.

3 TASKS

I consulted with members of my research group to determine the

domain tasks which ThreadViewer will support. We decided that

ThreadViewer will support the following tasks:

1) Discovering which patterns dominated a thread’s execution

time

2) Discovering when the thread executed the patterns

3) Browsing the function call entries and exits which make up

a given pattern

4 SOLUTION

ThreadViewer is divided into two panels. The TimeView panel uses
a bar graph and timeline to show which patterns dominated the
execution time and when the thread executed these patterns. The
FlowViz panel is used to display the FlowViz execution flow diagram
and show the function call entries and exits which make up a given
pattern.

4.1 The TimeView Panel

Figure 5 provides a screenshot of the TimeView panel.

ThreadViewer employs a vertical bar graph to display the percentage

of a thread’s execution time that each pattern occupies. The bar

graph is always sorted in descending order so that users can

immediately see which patterns dominated the execution time. To

the right of the bar graph are the timelines showing when the thread

executed the patterns; ThreadViewer provides each pattern with its

own timeline because it would not have been practical to show all

7919 patterns together on the same timeline. Each pattern’s timeline

is aligned next to that pattern’s bar in the bar graph so that users can

see all of the information about a pattern in the TimeView panel with

minimal eye movement.

To ensure that the timelines could fit into the TimeView panel,

ThreadViewer sets the timelines’ default unit of distance to be one

second. However, as mentioned in section 2, the time attribute has

nanosecond resolution. Thus, ThreadViewer provides users with the

ability to navigate and zoom into the timelines. The purpose of

providing users with the ability to zoom into the timelines is so that

they can precisely locate the time intervals when patterns of interest

occur. The idea is that once users have navigated to a time interval

they are interested in examining more closely, they can pull up

TimeSquared to get a detailed view of the time interval. However, at

the time I wrote this paper, I have not yet integrated TimeSquared

visualizations into ThreadViewer.

All of the timelines share two axes: the top axis displays

precisely the time interval that the users have zoomed into while the

bottom axis provides orientation. Users can zoom into the timeline

either by brushing the timelines themselves or by manipulating the

bar on the bottom axis.

4.2 The FlowViz Panel

The FlowViz execution diagram appears by default in the FlowViz

panel because users will first wish to look at the execution flow

diagram to get an overall understanding of how the thread is

behaving. However, when users click on a pattern’s row in the

vertical bar graph, the FlowViz panel displays the function call

entries and exits making up that pattern.

FlowViz execution flow diagrams are a way of visualizing

DINAMITE traces without the time attribute. Execution patterns are

just subsets of these traces without the time attribute. Thus,

ThreadViewer displays the execution patterns as subsets of the full

FlowViz execution flow diagram. Figure 6 shows the full execution

flow diagram of my dataset while Figure 7 shows an execution

pattern as a subset of the same execution flow diagram. When users

click on a row in the vertical bar graph, the FlowViz panel removes

color from the nodes which are not a part of the pattern.

Additionally, the FlowViz panel highlights in red the transitions

which occurred within a pattern. Each highlighted transition has two

weights: the first weight represents the number of times that

transition occurred in the execution pattern and the second weight

represents the number of times that transition occurred throughout

the entire thread execution.

When displaying the function call entries and exits within a

pattern, ThreadViewer could theoretically remove the irrelevant

nodes and edges from the FlowViz panel to save screen real estate.

However, the members of my research group stated that if they are

using ThreadViewer, they would likely switch between viewing the

full execution flow diagram and viewing the patterns. Therefore, to

maintain mental context, ThreadViewer does not alter the layouts of

the nodes and edges in the FlowViz panel.

The advantage of using the FlowViz visual encoding style to

display the function call entries and exits of each pattern is that the

visualizations on the left panel remain the same size. Regardless of

how big the patterns are; the execution patterns will always be

smaller than the full execution flow diagram.

5 IMPLEMENTATION

Because our research group developed FlowViz and TimeSquared

visualizations to be viewed on a web browser, I also designed

ThreadViewer to be viewed on a web browser. I built ThreadViewer

using html, Javascript, and the D3 library. I constructed the

timelines in the TimeView panel out of a single SVG. The FlowViz

execution diagrams are stored on ThreadViewer as PNG files.

6 RESULTS

I presented ThreadViewer to members of my research group so that

they could provide feedback on ThreadViewer’s effectiveness. My

research group said that visualizing the execution patterns as subsets

of the FlowViz execution flow diagram helped them easily

understand what the thread was doing within each pattern.

Additionally, my research group found the link navigation of the

Figure 5. The TimeView panel of ThreadView

Figure 6. A thread’s full execution flow diagram Figure 7. A pattern which the thread executed

timelines to be very convenient to use. However, my research group

also noted that without having the patterns sharing the same timeline,

it was difficult to see the order in which the thread executed the

patterns. My research group also stated that ThreadViewer needs to

support more domain tasks if it is to be an effective software

performance debugging tool. For example, after viewing the

execution patterns in the FlowViz view, my research group wanted

to know which patterns were most and least likely to appear

sequentially together in the thread’s execution.

6.1 Scenario Walkthrough

 Jim is a computer engineer who is using ThreadViewer to analyze

the behavior of a thread in his multi-threaded program. He first

looks at the full execution flow diagram in the FlowViz panel to get

a general understand of how the thread is behaving. He then looks at

the bar graph in the TimeView panel to see the percentages of the

thread’s execution time that each pattern occupied. He decides that

he is interested in studying the pattern which took up the most

execution time. Thus, he selects the first row in the bar graph and

inspects the highlighted nodes and edges in the FlowViz panel.

From studying the execution pattern in the FlowViz panel, he

observes that the thread is behaving abnormally. He therefore looks

at the pattern’s timeline to see when the thread is executing this

pattern. He zooms into one part of the timeline which shows the

thread executing that pattern. He decides that he wants to view this

part of the thread execution in detail so he clicks a button on

ThreadViewer to bring up the TimeSquared visualization on a

separate window.

7 DISCUSSION

ThreadViewer is in early development and is not ready to be used for

performance debugging. However, my research group was able to

use ThreadViewer to discover problems with the way the Sequitur

algorithm detects execution patterns. These discoveries excited

vigorous discussions within our research group about how to modify

Sequitur to address these problems and even if we should create our

own pattern detection algorithm. This section describes the

problems with the Sequitur algorithm that members of my research

group found using ThreadViewer.

7.1 Execution Patterns with a Small Number of Nodes

Viewing the execution patterns in the FlowViz panel showed that

some execution patterns detected by Sequitur would be of no interest

to engineers because they contained an extremely small number of

function call entries and exits. For example, Figure 8 shows a

pattern which only captured a single call to the function

__wt_spin_trylock::0xb54010.

7.2 Execution Patterns Capturing Incomplete Function
Calls

Viewing the execution patterns in the FlowViz panel also showed

that some patterns do not contain complete pairs of function call

entries and exits. Figure 9 shows an execution pattern in which a

thread exited a call to the function __wt_evict_walk without entering

it. These execution patterns would be very confusing to

ThreadViewer users.

Figure 9. An execution pattern showing the thread exiting a function
call to __evict_walk without entering it

7.3 Low Percentages of Execution Time

The bar graph in the TimeView panel shows that the vast majority of

the execution patterns occupy less than 1 percent of the thread’s

execution time. However, it is likely that ThreadViewer is under-

reporting the execution time percentages because I flattened the

hierarchy of the Sequitur output and only looked at pattern

occurrences in rule 0; it is probable that patterns only appear a few

times in rule 0 but appear numerous times as sub-patterns within

other patterns.

8 FUTURE WORK

Because of the discoveries my research group made with

ThreadViewer, I intend to either modify the Sequitur algorithm to

locate more meaningful execution patterns or develop my own

pattern detection algorithm. Improving our pattern detection strategy

will also help us reduce the dataset cardinality even further. For

example, constraining Sequitur to only create patterns with complete

pairs of function call entries and exits will reduce the number of

patterns that Sequitur can detect. If we are able to reduce the

cardinalities of all DINAMITE traces to a small number of patterns,

it may be possible to fit all of the patterns onto a single timeline.

Thus, ThreadViewer users will be able to see the order in which the

thread executed the patterns. Reducing the dataset cardinality also

has the benefit of making the navigation of the timeline more

responsive.

The visual encoding styles used in FlowViz also needs

improvement. For instance, FlowViz should use line width channels

to communicate edge weights as opposed to number labels. FlowViz

also communicates the direction attribute of each state using labels.

I would like to explore using node shapes to encode the direction

attribute: nodes with one shape represent function call entries while

nodes with another shape represent function call exits.

9 RELATED WORK

Visualization of execution traces is a well-researched field. Most

approaches for serial trace visualization involve assigning one of the

axes the time variable while the other axis is used to represent

different processes, classes, instructions, or methods [6] Tools like

TimeSquared which adopt this visualization scheme can only display

fractions of the total program execution duration. Other

visualization tools provide an overview of the execution trace and

allow users to zoom in on parts of the trace for more

details. Extravis is a tool which uses a “massive sequence view” to

Figure 8. An execution pattern
containing only one function call

show an overview of an execution and a “circular view” to show the

interactions between the components of a program [4]. Synctrace is

another tool which draws a serial timeline overview of a selected

thread and shows the call stacks of different threads in the context

view [3]. However, the visualization approaches adopted by both

Extravis and Synctrace are not scalable for large traces.

There is also research into how to detect and visualize execution

trace patterns. Knüpfer et al used complete call graphs to detect

trace patterns and proposed how the Vampir GUI performance tool

could visualize these patterns [2]. However, Knüpfer et al focused

primarily on creating the pattern detection algorithm and did not

perform any analysis on how feasible their visualization encoding

ideas were.

Our approach to visualizing execution patterns is similar to the

visual encoding schemes used by visualize genomic data. From a

data abstraction perspective, execution traces and genomes are very

similar datasets. Genes are long sequences of nucleotides while

execution traces are long sequences of execution events. Moreover,

genomes have larger cardinality than our execution traces. The

human genome, for instance, contains approximately 3 billion

nucleotides; in contrast, our execution traces only contain millions of

events. Therefore, the visualization techniques employed by genome

browsers can accommodate the typical sizes of our execution traces.

Rather than simply visualizing the entire genome, genome

browsers allow users to study individual genes [10]. Genes are

approximately 10,000 nucleotides in length, and there are

approximately 20,000 genes in the human genome. Thus,

visualizing a single gene is a more tractable infovis problem than

visualizing an entire genome at once. Some visualization tools for

analyzing genomic data also use derived attributes to guide users to

the most relevant genes they are interested in studying [5]. Similar

to these tools, we chose to visualize individual execution patterns

instead of displaying the entire execution trace. Additionally,

ThreadViewer also has derived attributes which guide users to the

most interesting execution patterns.

10 CONCLUSION

I present ThreadViewer, a visualization tool for analyzing a thread in

a program execution. This tool uses the FlowViz visualization to

provide an overview of a thread’s behavior and presents users with

the different patterns of behavior that occurred in the thread’s

execution. A bar graph shows which patterns dominated the thread’s

execution time while a timeline provides users with the ability to see

precisely when the patterns occurred in the execution. Once users

have identified sections of the execution that they would like to

examine more closely, they can view those sections in detail using

TimeSquared. However, TimeSquared has yet to be integrated into

ThreadViewer.

Although ThreadViewer is still in the early stage of

development, it has already revealed problems with the way we are

detecting execution patterns. I will continue to use ThreadViewer to

evaluate the effectiveness of any future pattern detection strategies

that I create.

ACKNOWLEDGEMENTS

I would like to thank Tamara Munzner for mentoring me throughout

this project. I would also like to thank the members of my research

group for providing me with feedback about ThreadViewer, in

particular Sasha Fedorova and Ivan Beschastnikh.

REFERENCES

[1] A Survey on Performance Tuning by Plumbr.

https://plumbr.eu/blog/performance-blog/java-performance-

tuning-survey-results-part-i.

[2] Andreas Knüpfer, Bernhard Voigt, Wolfgang E. Nagel, and

Harmut Mix, Visualization of repetitive patterns in event

traces, in International Workshop on Applied Parallel

Computing. Springer Berlin Heidelberg, 2006.

[3] Benjamin Karran, Jonas Trumper, and Jurgen

Dollner, Synctrace: Visual Thread-interplay Analysis,

in IEEE International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT), 2013.

[4] Danny Holten, Bas Cornelissen, and Jarke J. Van Wijk, Trace

Visualization Using Hierarchical Edge Bundles and Massive

Sequence Views, in IEEE International Workshop on

Visualizing Software for Understanding and Analysis

(VISSOFT), 2007.

[5] Joel A. Ferstay, Cydney B Nielsen, and Tamara

Munzner, Variant View: Visualizing Sequence Variants in

their Gene Context, in IEEE Trans. Visualization and

Computer Graphics (Proc. InfoVis), 19(12):2546-2555, 2013.

[6] Katherine E. Isaacs, Alfredo Giménez, Todd Gamblin, and

Abhinav Bhatele, State of the Art of Performance

Visualization, in EuroVis, 2014

[7] Neil Walkinshaw, Sheeva Afshan, and Phil McMinn, Using

compression algorithms to support the comprehension of

program traces, in Proceedings of the Eighth International

Workshop on Dynamic Analysis. ACM, 2010.

[8] Sequitur, http://www.sequitur.info/

[9] Svetozar Miucin, Lyuyu Ye, Augustine Wong, Derek Chan,

Ivan Beschastnikh, and Alexandra Fedorova, Blasting

Performance Bugs with DINAMITE, submitted to the

USENIX Annual Technical Conference, 2017
[10] UCSC Genome Browser, https://genome.ucsc.edu/

https://genome.ucsc.edu/

