
Robovis: Parameter Space Exploration in Robotic Design

Alistair Wick

Fig. 1. The Robovis application window

Abstract—Robotic arms can be defined by a set of parameters such as their dimensions and power: Robovis is a visual parameter-
space exploration tool meant to help end users find settings for these parameters which result in a robot arm that is useful for their
purposes.

Index Terms—Visualization, Robotics, CPSC547

1 INTRODUCTION

Robotics applications are numerous and varied, but the design process
for a robotic arm is esoteric, not accessible to the many potential users
who lack the specialist skills necessary for this work. Robovis is a
tool designed as the user-facing component of a larger toolchain which
would partially automate this design process. It allows the user to
explore the design space for a robotic arm, varying aspects of the arm’s
configuration such as the length of different components and the torques
of the different motors, and showing them how the resulting robot arm
will perform. In this prototype tool, the performance metrics of the
arm are limited to the shape of the area the end effector can reach (the
arm’s “workspace”) and the load it can carry. In an attempt to enhance
the interactive iteration of the configuration, Robovis takes a novel
approach to the display of the workspace: it displays the workspace
of both the current configuration and several “nearby” configurations,
with the aim of guiding the user towards configurations which suit their
needs.

As far as I am aware, there is no other comparable tool for visually
exploring the design space of a robotic arm. The work of figuring out a
bespoke arm’s design is typically done as-needed for each new robotics
project, which may hobble uptake of robotic manipulators outside
of research and high-end automation applications. The modeling of

• Alistair is a graduate student at the University of British Columbia. E-mail:
alistair.wk@gmail.com.

an arm and its capabilities may even be performed post-hoc, after a
manipulator is bought or built: an immediately relevant example of
such a case is the control application I developed for my own robotics
project, from which RoboVis stems. This work was unpublished, but a
screenshot of the workspace visualization is shown in Fig. 2; it is from
this project that Robovis was born.

2 RELATED WORK

A published example of this type of work is a project by Johari et
al. [2], where they model and simulate a palletizing robot with similar
mechanics to the design modelled by Robovis. They created a 3D
visualization of the arm’s workspace, shown in figure 7 of the paper.
Their approach certainly allows exploration of the design space of an
arm, but is not suited to this task: in much the same way as I was
able to test different configurations using the PyIK control tool for my
robot arm, their modelling application can be loaded with different
configurations to see the results; however, as with my application, this
is an extremely slow process, as the software must be reloaded after
each change to the configuration.

In a project by Hao et al. to develop a 6-dof arm and the associated
control software [1], we see an approach with 3D visualizations of the
resulting arm, in custom software dubbed SMART ARM. They briefly
discuss optimizing the design of the arm for a given task, including
consideration of its reachable volume, but do not consider a targeted
visualization or interaction approach as in Robovis, instead relying on
the slow configuration iteration process described above.

Essentially, while robotic simulation tools abound, there are no exist-

Fig. 2. Screenshot of PyIK, a bespoke robotic control application I
developed for EvoArm, showing the workspace visualization in green

ing tools which are explicitly designed for the exploration of different
possible configurations of robotic arms; rather, these tools are typically
designed to explore the usage and control of existing designs, or are
limited to testing the feasibility of a new design (rather than helping
the user come up with one which is suitable).

2.1 Robotic Manipulator Analysis

Knowing precisely where a robot manipulator can reach has been an im-
portant problem in robotics for some time. In Design Considerations for
Manipulator Workspace [7], Roth et al. explore ways of analytically de-
termining the workspace of an arm, including high degree-of-freedom
designs: those with redundant axes, which can reach not just any point
but any orientation for their end effector. The basic approach taken in
this paper involves taking the workspace of a point on the end of one
axis, and revolving it around the previous axis, repeating for all axes in
the design:

Rk[Wk+1(P)] =Wk(P)

For example, in the basic case of a point at the end of two links,
the point is able to revolve in a circle around the second axis, and
this circle is revolved around the first axis to obtain a toroidal surface
reachable by the point. Adding additional degrees of freedom them
forms increasingly complex 3-dimensional volumes, rather than simple
surfaces. The presentation of the overall workspace used in this paper is
quite similar to the main view employed in Robovis: a cross-sectional
view showing the reachable area for some axes of the robot (shown in
figure 6 of the paper).

One of the more interesting aspects of this analysis is the distinction
drawn between the workspace in which the end effector can be placed,
and the workspace in which it can be placed in any orientation. Roth
et al. refer to the different workspaces as the primary workspace
W p(P), where each point is reachable from all orientations, and the
secondary workspace W s(P), where each point is reachable with only
a limited subset of all orientations (or only one). This is an aspect of
the design problem I do not deal with in Robovis: I ignore end-effector
orientation, and indeed only consider the two primary axes, leaving
the third, revolute axis up to the user’s imagination. I am also able to
ignore the case of “voids” being present in the workspace, as this is not
possible with the mechanics of the design under consideration in my
application.

While the framework Roth et al. present is more general than my
approach, extending to arbitrary DOF and designs, it is also more
idealized: it does not appear to take into account limits on the joint
angles, and does not deal with other mechanical constraints such as
self-interference. These are a focus for Robovis: my approach tests for

reachable points using a full IK solver which checks any number of
specified constraints.

2.2 Vis Design

I employ a number of fairly standard viz idioms in my tool, includ-
ing scented widgets, first fully described by Willett et al. [9]. These
are interactive widgets, such as sliders or input boxes, which have
small visualizations attached or embedded within them. They typically
outperform conventional (un-scented) user interface widgets, as they
provide some indication as to the structure or composition of the data
under interaction. This allows users to quickly explore data by guiding
their search towards areas of interest, or away from invalid or uninter-
esting inputs, without the need to first “try them out” to see the full
results. In my design for Robovis, a scented slider is used to show a
histogram of the manipulator’s load capacity over its workspace. The
use of a scented slider here provides additional contextual information
over a standard slider, allowing the user to quickly see how much of the
overall range they will be removing by raising the minimum allowable
load.

Robovis displays the shape of a robot arm configuration’s reachable
workspace as its primary visual cue, and it is this shape which is the
user’s main consideration when accepting or rejecting a configuration.
In the course of using the application, the user is presented with a large
number of these shape renderings. A common approach to showing a
large number of closely related outputs is the small-multiple, or faceted
display idiom. This type of approach can be seen in Keefe at al. [3],
where ˜100 pig jaw profiles (and the outlines of their motions) are
visible and selectable at once, or in Marks et al. [5], where thumbnails
of CGI renders with varying parameters are displayed side-by-side. On
the surface this type of display may appear a reasonable approach for
Robovis, but I intentionally avoid small-multiple displays. I believe
that the user must be able to understand the exact shape and scale
of the reachable area: in fact, this is essential to the task. However,
these workspace shapes vary widely in size and shape in ways which
are irregular and unpredictable, and do not have a fixed underlying
structure which would aid visual comparisons. These problems are
compounded when the viewing area is constricted, and so I feel that the
small-multiples view is inappropriate.

2.3 Parameter Space Exploration

While my specific application is novel, the idea of using viz to ex-
plore parameter spaces is far from new. Sedlmair et al. [8] discuss a
framework for approaching this vast research space, and while their
discussion focuses somewhat on avoiding the complications of com-
putationally costly sampling (not a major problem for my tool), their
insights have certainly been applicable.

My general approach to interaction in Robovis is a take on the “in-
formed trial and error” and “local-to-global” idioms discussed in this
paper. Essentially, interaction in Robovis revolves around the iterative
change of a “current” configuration, with the goal of getting closer to
(and eventually meeting) the goal requirements. This corresponds to
the informed trial-and-error approach, but I also mix in aspects of the
local-to-global approach, by sampling around the current configuration
and displaying the results of these samples to the user. These results
are then made selectable, so that the user may “jump” to those configu-
rations which are more in line with their requirements. In my tool, this
approach is not borne of the need to avoid real-time sampling – samples
for my tool take a fraction of a second to compute. Rather, the reason-
ing is along the same lines as for scented widgets: the nearby results
provide the “scent”, guiding the user towards solutions which meet
their requirements by helping to inform the process of trial-and-error
refinement.

3 DATA AND TASK ABSTRACTIONS

Robovis operates on a two main sets of data: the configurations, and
the IK results, with the latter generated from the former. Importantly,
both data sets are dynamic – they change, often frequently, as the user
operates the tool.

Fig. 3. Basic layout of the arm

Attribute Description
Elevator length First section of the arm – see Fig. 3
Forearm length Length of the second section of the arm,

to which the end effector is attached
Rod ratio Ratio of length of the actuator rod to the

elevator; affects leverage
Elevator torque Maximum torque available to drive the

elevator; limits the maximum load, and
should include any gearing of the drive
mechanism

Actuator torque Maximum torque available to drive the
actuator, which indirectly drives the fore-
arm; also limits the maximum load

Table 1. Adjustable attributes in the Robovis configuration, where every
attribute is a continuous, quantitative, sequential value.

3.1 Configuration Data

Assuming the basic layout shown in Fig. 3 is adhered to, the config-
uration of the arm is a set of parameters which together fully define
the arm’s physical properties, size, and performance. These include
important aspects of an arm’s design like the respective lengths of the
different rigid sections, and the amount of torque (rotational power)
available to the drive systems for the elevator and actuator portions of
the arm. These properties are defined in real-world units: millimeters
and Newton-meters.

A subset of five of these properties are modifiable in Robovis. This
adjustable configuration is described in Table 1. While not a focus for
direct visualization in Robovis, a configuration fully defines a solution,
and so in some sense the rest of the data in the application – that which
is actually displayed – is derived from the configuration data. Changes
to the current configuration are at the root of the dynamism of the
dataset: multiple successive changes to the current configuration can
(and do) trigger total regeneration of all data in the application.

The configuration space – the space to be explored, in which all
possible configurations exist – is essentially a hyperdimensional field,
where any point is itself a multi-value continuous 2D field, describing
the reach and performance of the arm corresponding to the configuration
values which index said point. This space is discretized in a course
sampling, extending outwards from the current configuration. The
current configuration can be freely adjusted, and is initialized with a
known “seed” value for further exploration.

Additional, fixed attributes which might nevertheless be considered
part of the configuration include aspects of the design such as angular
limits, for example between different sections of the arm, or on the drive
system. These are baked into the solver, and are not made visible to the
user in the presented version of Robovis. Many more explicit attributes
are possible, and would not represent a significant challenge algorith-
mically; they would simply be new, or newly adjustable constraints in
the solver.

Elbow Position

←
El

ev
at

or
→

l e

Origin

l f

End effector

Fig. 4. Inverse Kinematics: Locating the elbow joint using the intersec-
tions of circles around the origin and goal points

3.2 Inverse Kinematics & Load Calculations

The actual process by which a configuration is transformed into
workspace data is not a data set: rather, it is a data model, consist-
ing of calculations which treat the configuration data as a description
of a physical arm. I have chosen to include these details here as this
process is arguably what the application is truly visualizing for the user;
the rest of the data are merely inputs and outputs.

Inverse Kinematics (IK) is a process where a pose for a kinematic
chain is found, satisfying some goal position and/or orientation of an
“end effector” at the end of the kinematic chain. The IK in Robovis is
adapted from the routines used in PyIK.

With the first degree of freedom of the arm ignored, the remaining
two (motion of the elevator and actuator/forearm assembly) are con-
sidered within a 2D plane. The basic approach used is to analyze two
circles radiating from the origin and from the goal point, with radii
equal to the respective section lengths. If these circles do not intersect,
no solution is possible: the goal is too far from the origin. If they do
intersect, then at least one intersection may be found, corresponding to
the position of the “elbow” joint between the elevator and forearm – in
the case of two intersections, the higher intersection is chosen as the
elbow point (Fig. 4).

With the elevator length as le, the forearm length as l f , goal point
G, and origin O at (0,0), the solution point I for the elbow position is
described in Equation 1.

a =
l2

f − l2
e + ||G||2

||G||2

I1 =

G−||G||−1(G ·a−
√

l2
f −a2 ·Gy)

G−||G||−1(G ·a+
√

l2
f −a2 ·Gx)

I2 =

G−||G||−1(G ·a+
√

l2
f −a2 ·Gy)

G−||G||−1(G ·a−
√

l2
f −a2 ·Gx)

I =

{
I1, if I1y > I2y

I2, otherwise

(1)

The angle α between the elevator and elbow is then:

α = arccos
(

Ve·V f

||Ve||||V f ||

)
(2)

lu

Elbow Position

←
El

ev
at

or
→

l e

Origin

ll

l r

α

θ

X

Y

l f

α

End effector

Fig. 5. Inverse Kinematics: Finding the interior angles of the arm’s
actuation mechanism

Once the elbow point is known, the interior angles of the actuation
mechanism (the lever assembly at the rear of the arm which drives the
forearm) can be found by applying the cosine rule. This is necessary to
calculate the position of the lower actuator lever, which is important in
the load calculations.

Y =
√

l2
e + l2

u −2lelu cos(α)

θ = arccos
(

Y 2 + l2
l − l2

r

2Y ll

)
+ arccos

(
Y 2 + l2

e − l2
u

2Y le

) (3)

Once the pose of the arm is known for a given point: with θ f as the
angle of the forearm from vertical, θa as the angle of the actuator from
vertical, the maximum load when considering the actuator motor may
be calculated as follows:

θ = θ f −
π

2

w =
l f cosθ

lu cosα

A =

(
sinγ

cosγ

)
lactuator =

∣∣∣∣∣ Tactuator

llw
(
cos(θ +α)Ax− sin(θ +α)Ay

) ∣∣∣∣∣
(4)

The maximum load when considering the elevator motor is then:

E =

(
sinθe
cosθe

)
z = Eywsin(θ +α)−EX (wcos(θ +α)+1)

lelevator =

∣∣∣∣Televator

lez

∣∣∣∣
(5)

3.2.1 Workspace Data
Strictly speaking, a robot arm’s workspace is the shape in 3D space in
which it is able to place its end effector: the space mapped out by its
range of motion, as in Fig. 6. In Robovis, I extend the term to refer to the
area in which an arm is able to place its end effector while also meeting
additional constraints; in the presented tool, these constraints are on
the load that the arm is able to support, meaning that an increase in
the minimum allowable load may decrease the workspace. In Robovis,

Fig. 6. Motion capabilities of the basic palletizing robot design under
consideration. Images are of my robot arm design EvoArm, rendered
using CAD software.

visual analysis of the workspace is the fundamental technique by which
users evaluate a potential design, and so this data is a key component
of the overall tool.

The raw workspace data takes the form of a grid of binary categorical
samples, with square cells of uniform separation. Each cell indicates
whether the configuration under consideration results in an arm which
is able to place its end effector at the sample point – whether a valid IK
solution could be found for the point.

This coarse sampling maps out a region of space – a shape, or several
shapes – and so, with no additional information contained within this
data, it was natural to derive polygonal shapes from the grid data.
These are contours, wrapping around the positive regions of the grid,
approximating the boundary between the arm meeting or failing the
specified physical constraints.

3.3 Task
The main task is to find a configuration which matches the user’s re-
quirements: following the task abstraction guidelines in Visualization
Analysis and Design [6], this is a parameter-space search/explore task,
since neither the “location” (configuration) nor the exact target (arm
capabilities) are known ahead of time. Notably, the hyperdimensional
nature of the configuration space, in combination with the multidi-
mensional, shape-centric output, makes providing an overview of the
exploration space difficult. What is the target of the search? Since the
space is continuous, any viable user requirements for an arm will typi-
cally yield an infinite number of configurations which are acceptable;
however, the target of the search is simply any single configuration
which fulfills the requirements, not the entire set.

The tool might also find related uses, outside of this core task: for
example, one might wish to explore the space to discover the limits of
practical designs.

On the spectrum of “specific” to “general” vis tools, this is fairly
specific: it aims to solve one problem well.

4 SOLUTION

The user interacts with the application (Fig. 1) by modifying a “current”
configuration in an iterative fashion, using the coupled sliders and
value-boxes in the parameter panel on the right hand side of the display.
The user’s choices are guided by various visualization elements in the
user interface: the main workspace view, ghost outlines and interactive
inspectors in the center of the display, the load histogram/slider in the
bottom-right, and the load preview bars in the top-left.

Fig. 7. Simple outline view of a workspace, with a visualization of the
robot arm itself also overlaid (this appears while hovering the mouse over
the workspace)

4.1 Workspace View
The robot arm’s workspace is represented by an outline view in 2D
(Fig. 7) – this shows a slice of the overall volume in which the arm is
able to work, in any plane which passes through the axis of rotation
for the arm’s base rotation motion (the ‘first’ of the three degrees of
freedom). The motion of this first axis simply revolves the planar
workspace into a roughly toroidal volume, in much the same way
as described in Sect. 2.1. It is assumed that this axis aligns with
gravity, and so the rotary position on this axis has no bearing on the
shape of the workspace, even taking into account effects such as the
minimum allowable load capacity. It is therefore of little relevance
in the presentation of the workspace slice, and is ignored in Robovis’
presentation.

In Robovis, a workspace essentially consists of a field of binary
point samples, indicating whether or not each point is reachable by a
particular configuration of the arm. The number of samples is adjustable
in code, but not exposed to the user at runtime; as presented, Robovis
uses a 100× 200 grid, or 20,000 individual samples per workspace.
One or more contours (there may be multiple ‘islands’ in the data) are
then generated from the sample grid, wrapping around the contiguous
areas within which valid IK solutions can be found.

I chose to use outlines over a filled display to enable the concurrent
use of a heatmap overlay, and to allow multiple workspaces to be
visualized in a collocated pattern.

4.2 Ghosts
Robovis uses a novel idiom dubbed “ghost outlines” to display nearby
samples of the configuration space. In this hyperdimensional space,
each parameter of the configuration is an axis, with a single parameter
axis being the ‘current’ axis. Six sample configurations are taken at
steps along this axis, fanning out in both directions from the current
configuration (Fig. 8), and the workspaces which result from these con-
figurations are displayed alongside the main outline as ghosts (Fig. 9).

Fig. 8. A reduced 3D representation of the many possible dimensions for
the configuration space for the arm; this space extends in all directions
from the current configuration, and any point in the space may represent
a solution for the user. Robovis samples nearby points along a single
selected parameter, and displays the results of these samples as “Ghosts”
alongside the main display.

Fig. 9. Colored ghost outlines visible alongside the white main out-
line, here displayed for the ‘forearm-length’ parameter and showing a
straightforward scaling effect.

As long as no other parameters are changed, these samples (and
their corresponding ghosts) remain static in the configuration space.
The intention is to create the impression of the current configuration
sliding through the configuration space – the ghosts provide a visual
reference for the relative change in the current workspace. Three ghosts
are displayed on either side of the current configuration at all times; to
maintain this, as the current configuration crosses over a ghost’s sample
configuration, one ghost on the positive side of the change is added, and
a ghost on the negative side removed. To avoid visually jarring changes,
and to provide a visual indication of the parameter-space distance, the
ghosts fade in and out as the current configuration moves respectively
towards or away from them. A sample motion through the ‘rod-ratio’
axis is shown in Fig. 10.

4.3 Inspectors – Arm Visualization

A sketch view of the arm itself is displayed, for the current config-
uration, in two instances: when the user hovers the mouse over the
workspace area, and when the user clicks in the workspace to select a
point of interest. In both cases, the arm is visualized with its goal end
effector position set to the hovered or selected point. Here, I refer to
these individual displays as “inspectors”.

Each inspector operates a dedicated IK solver in ’point’ mode, which
yields results for a single goal point rather than a grid across the full
range of motion (as in the workspace solver). In this mode, the solver
returns sufficient information to reconstruct the arm’s pose, and so the
arm can be drawn by ‘joining the dots’ according to the computed
elbow position, interior angles and configuration lengths. Optional
additional annotations may also be displayed, and are displayed by
default for the hover inspector. These include a readout of the goal
coordinates and maximum load for the point, and a force-vector display
for the load calculations, providing some indication as to the internal
forces on the arm for a particular point at maximum loading.

This mode of viewing was chosen as a straightforward and complete
representation of a solution at a point, and as a way of showing the user
the physical structure of the arm, both for the current configuration for
any point in the workspace. Selecting a point allows the user to see
how the arm’s structure changes as they alter configuration parameters,
tying these parameters to their physical representations.

4.4 Readout and Load Preview

As the user moves the hover inspector, or selects a point in the main
view, additional readouts (??) appear on the top-left of the application
window. These readouts include explicitly laid-out information on the
coordinates of the point in question, as well as a bar chart, dubbed the
“load preview”.

This preview chart serves a role supplementing the ghost outlines in
guiding the user towards a suitable solution: rather than displaying the
change in the workspace for a particular parameter, this chart shows
how the load at a particular point will change as the parameter is
altered, with each of the three bars on the left and right of the central
column corresponding to the three ghosts on either side of the current
configuration.

4.5 Interface Design

The Robovis application window is a largely static user interface con-
taining controls for the current configuration, and several visualization
widgets, including the main view. This view contains the key visualiza-
tion elements of the tool, including the outline and heatmap views of
the current configuration, the ghost outlines of nearby configurations,
and any visualizations of the arm itself.

5 IMPLEMENTATION

Medium-level implementation description. Specifics of what you
did versus what other libraries you used/built upon.

This is a major divergence from standard research paper for-
mat, providing much more detail than would normally be appro-
priate.

5.1 Workspace Calculations

The Inverse Kinematics and load calculations which go into generating
Robovis’ views were reformulated from PyIK’s code. In PyIK, the
workspace (Fig. 2) was calculated in much the same overall way as
in Robovis, with a grid of sample points; however, this is where the
similarities end. The newer tool takes the original nested loops and
converts them to massively parallel matrix operations: where before
there were individual values inside loops, now there are values inside
huge matrix data structures, with calculations handled by NumPy. For
some lines this was a matter of simply switching data types – for
example, cos(x) · y will work in semantically identically as a statement
in a loop or with x replaced with a matrix holding the old values of x.

5.2 Asynchronous Compute

As my data set was not precalculated, a substantial amount of work
went into making the generation of results data execute at interactive
speeds. This was achieved through a custom asynchronous compute
pipeline which spreads work units (“jobs”) over separate processes, and
hence over the available CPU cores on the host computer. This also
serves to keep the main process relatively unencumbered, ensuring the
user interactions and user interface rendering which it handles are left
working smoothly and responsively.

The actual “work” discussed here is the generation of workspace
results for the ghost outlines. Importantly, results are generated not
only for the on-screen ghosts, but for the off-screen ghosts attached to
non-current parameters. Individual jobs execute within approximately
100ms on a typical PC core, but clearly the number of jobs discussed
here (several dozen) precludes interactivity when computations are
executed sequentially on a single thread.

The basic unit of the asynchronous pipeline is the Process, a rep-
resentation of an operating system process provided by Python’s mul-
tiprocessing module. Full processes are used over the more common
case of within-process threads due to a phenomenon dubbed “Global
Interpreter Lock”1. In short, in the most common Python runtimes,
multiple threads within the same Python process cannot be executed
concurrently. Instead, sub-processes are spawned during execution:
these are separate instances of the Python program which can interact
indirectly with the main process. Processes are given a standard Python
function to execute, and expire when this function terminates. For
convenience, multiprocessing provides a Pool system for creating and
managing worker processes. Rather than terminating when their work
is done, Pool workers run a function which listens for input in the form
of new functions and arguments to execute on. The Pool object itself
is provided work, which it automatically assigns to the next available
worker. The results of this work can then be polled for completion.

The Pool seems like a full solution to the asynchronous work prob-
lem, but unfortunately falls short in the details. The main issue I found
was that there was no way to modify the work queue once jobs were
submitted: in an interactive application with a constantly changing state,
this meant spending significant time waiting for jobs with out-of date
results to complete. Tagging jobs with an incremental stamp ensured
only the newest results were actually displayed, but I was still left with
multi-second latency and inconsistently updated visuals. My solution
was to wrap the Pool in an additional job queueing system which keeps
the number of jobs in the Pool within the limits of the worker count.
The system monitors the completion of previous jobs, and the Pool
is provided with new jobs only once a worker has completed a previ-
ous one. In the meantime, jobs in the wrapper’s queue are free to be
modified, overwritten, or re-ordered. The queue as implemented is a
priority queue, with the additional constraint that jobs are tagged with
a ‘reference’, and any new jobs with the same reference as a job in the
queue will replace the old job.

1GIL, its causes, and its full effects are far beyond the scope of this paper. A
general overview of the concept is available at https://en.wikipedia.org/
wiki/Global_interpreter_lock, and a specific discussion for CPython at
http://www.dabeaz.com/GIL/

https://en.wikipedia.org/wiki/Global_interpreter_lock
https://en.wikipedia.org/wiki/Global_interpreter_lock
http://www.dabeaz.com/GIL/

Fig. 10. Progression of main, white outline and colored ghost outlines as the ‘rod-ratio’ parameter is altered in the negative (blue) direction.

Fig. 11. Both inspectors (arm visualizations) visible at once – the upper
arm for a selected point, and the lower for a hovered point

Fig. 12. Readouts for the selected and hovered points, with the load
preview bar chart displaying the relative load for nearby (ghost) configu-
rations at the selected point.

Fig. 13. Scenario 1: Hovering over the workspace to inspect the default
configuration

6 RESULTS

7 SCENARIOS OF USE

I expect that a user will approach the application with some idea of
what they want out of their own robotic arm in terms of the workspace
and load requirements.

I work under the assumption that any configuration file output by the
software can be automatically ‘compiled’ by separate software into 3D-
printable files for physically constructing the arm; however, this is not
a critical assumption, and Robovis does not have to be integrated with
a larger toolchain to be useful. Rather, the tool could be considered as
a design exploration tool for manual creation of a palletizing robot arm
design, outputting the dimensions and motor/drive system requirements
for a roboticist to design for; or, indeed, as a tool for roboticists to use
themselves in the design process.

7.1 Scenario 1: Sorting Cards
A researcher has a project in which she wishes to use a robotic arm in
combination with an optical tracking system to sort playing cards. She
realizes that the arm needs a wide reach over a flat surface to move the
cards around, but minimal carrying capacity – just enough to support
a wrist joint and pneumatic holder attachment, with the weight of the
cards themselves being negligible. She also notes that the arm will not
have to be able to lift the cards more than a few centimeters above the
work surface.

She estimates that the entire assembly at the end of the arm, including
the motor, frame and pneumatic cup, will weight 120g; she decides that
a load capacity of 2.0 newtons would leave a comfortable margin for
her task. She measures her working area, a tabletop within the optical
system’s view, as 30cm by 30cm, and notes that it could be raised or
lowered freely to accommodate the arm’s height. She opens Robovis
to begin exploring the potential designs for a robot arm.

Presented with the default view of the seed configuration, she exam-
ines its properties by hovering her mouse over the view, and moving
it across the widest area of the arm’s workspace (Fig. 13). She finds
that the arm’s reach is too small, and notes that it is annoying to have
to manually calculate the distance between the sides of the workspace,

Fig. 14. Scenario 1: Arm vis shows overlap between the arm’s pose and
the worksurface under consideration at y=80mm

Fig. 15. Scenario 1: Ghost outlines show that increasing the forearm
length will lower the wide portion of the workspace

as there is no measuring tool in the application. She also notices that
the arm is far more powerful than she requires, able to support some
20-30 N of load over the widest area. She decides to approach the size
of the workspace as the first problem to deal with, and turns off the
load heatmap using the toggle button.

Scrolling through the parameters by hovering the cursor over them,
she sees that raising either the forearm or the elevator lengths will
increase the workspace size, while changing the rod ratio will only
shrink the area, and altering the motor torques would appear to have
no effect. She decides to raise the elevator length to 230 mm, and sees
that the widest portion of the workspace, at approximately +80 mm y,
now meets her requirements as it is over 380 mm in width. However, as
she inspects it with the hover tool, she sees that the arm’s frame would
intersect this area (Fig. 14), indicating that the arm would collide with
the worksurface. She surmises that the working area will have to be
at around y = 0 to avoid contact between the arm’s mechanics and the
work surface.

Scrolling through the parameters again, she sees that the ghost out-
lines indicate that raising the forearm’s length will lower the widest
portion of the workspace (Fig. 15), as she has now realized she needs
to do. She raises the forearm slider to 249.2 mm, at which point this
wide area sits over the line at y = 0. Inspecting the range at this line,
she finds that the arm can reach radially from as close as 40 mm from
its origin to as far as 475 mm away.

With no facility in the tool to view the arm’s workspace from above,
she resorts to pen and paper to verify that the workspace at this level will
encompass her 300×300 mm worksurface. Placing the worksurface at
40 mm away from the origin horizontally, she checks that the corner of
the worksurface is within the range of the arm:√

3402 +1502 = 371.6 < 475

Satisfied, she turns to the arm’s load. She knows that less powerful
motors tend to be cheaper, and she wants to save part of the project’s
budget for a selection of optically diverse playing cards – thus, she
decides to try and keep the motor’s power requirements as low as
possible. She starts by raising the minimum load to 2 N, noting that this

Fig. 16. Scenario 1: Load histogram shows that the load distribution for
the current configuration is comfortably above the setpoint.

Fig. 17. Scenario 1: Shape of the final workspace for the scenario,
fulfilling the researcher’s requirements.

change comes nowhere close to the main spike in the load histogram:
none of the workspace has been cut off by increasing the minimum
load (Fig. 16).

She lowers both motor torque sliders, drastically at first (watching
the shifting load distribution), before switching to a finer-grained re-
finement. She realizes that using the same motors for both axes would
make sense, and she tries to establish a lower bound on the acceptable
power for both. The widest portion of the working area drops slightly,
but examining with the hover tool shows her that the arm will not col-
lide with the worksurface; having the arm’s origin above the surface is
also acceptable. Continuing in a loop of refinement and checking, she
finds that increasing the ‘rod ratio’ creates a wedge-shaped workspace
(Fig. 17) which works well for her purposes, and allows her to drop the
motor torques to just 0.5 N.m.

7.2 Scenario 2: Moving Cans
A food packaging facility operates a production line and are adding a
new conveyor belt to the line where heavy, filled cans must be moved
from a low conveyor belt to the new, higher one, with a 0.8 m vertical
separation between the two levels. The conveyors will be placed 1 m
apart, and the production manager thinks a robot arm can be placed
in-between the two conveyors, where it will swing from one to the other
while also raising the cans up. The cans weigh 600g when full.

The technician assigned to the task considers his options, and decides
that a robot arm built in-house specifically for the task could save costs
over a generic industrial arm. He opens up Robovis, and like the
researcher in scenario 1, finds that the seed configuration is far from his
requirements. He reasons that he will need the arm to be able to place
the cans at a radius of around 600 mm – or, at least that the radii where
it picks up and drops off the cans add up to around 1100mm (leaving
a margin for picking and placing from across the conveyors). He sees
that increasing either the elevator or forearm lengths will increase the
reach of the arm; he picks the elevator to scale up.

Scaling up the elevator length, he finds that he is creating an arc-
shaped workspace (Fig. 18), and considers whether this would be

Fig. 18. Scenario 2: Arc-shaped workspace owing to a high elevator
length and relatively low forearm length

suitable for his purposes. He continues expanding the elevator length
until the outer reaches of the arc are around 1 m away from the origin,
and the upper reaches over 0.8 m higher than the zero level, where the
arc bulges out the most (Fig. 19). He reasons that an arm of this type
could be placed adjacent to the higher conveyor, reaching across to pick
up the cans and lifting them up and around onto the higher conveyor,
near the center of rotation; that is, close to radial zero.

He considers the weight of the payload. He knows that Robovis
does not account for the arm’s frame weight, and adds 500g to the
payload weight to account for this, bringing the total up to 1.1 kg.
He reasons that the payload will have to be accelerated upwards, and
picks an acceleration of 3ms−2. Combining this with gravity, he arrives
at a peak load of 14 N, and enters this into Robovis. Finding that
this leaves only a small patch of workspace left, he scrolls through
the parameters, and finds that increasing the elevator torque begins
to restore the workspace size. When he raises the elevator torque
past 14 N.m, the workspace is fully restored (as indicated by the load
histogram). He realises that this makes sense – at the furthest reach
of the workspace, the elevator motor is supporting a 14 N load at 1 m
away. The final workspace for this option is shown in Fig. 20)

8 DISCUSSION AND FUTURE WORK

In my opinion, the main strength of the work I have presented here is its
novel and goal-oriented approach to parameter space exploration. The
‘ghost’ outlines are the key idea which turn the user experience from
an unguided trial-and-error exploration to a visually driven optimiza-
tion task, and it is this visualization technique which I feel deserves
the most recognition in this tool. I’m also pleased with the level of
responsiveness I achieved, especially considering the sheer amount of
numerical calculation involved in formulating the data for display; this
also feeds into another mixed strength, the level of integration between
the tool and its underlying data representation. As discussed at length
in Sect. 5, Robovis generates its data dynamically, which expands its
range of operation beyond what any static dataset could offer: both
very fine refinements and extremely wide ranges are possible in the
search process.

I believe the major weakness of this work is the lack of any user
participation in the design process, or any formal user study – this
leaves me without any real feedback (or other metrics) with which to
objectively evaluate the success of my tool and approach. However, I do
have some “feedback” in the form of the results of the usage scenarios
walked through in Sect. 7.

There are some important shortcomings in my approach revealed
by these scenarios – while not critical failures (I still found that a
motivated user could reasonably complete the scenarios), there are

Fig. 19. Scenario 2: Examining the reach of the ‘arc’ robot, designed to
lift objects from a distant position to place them at a nearby, but elevated
position.

Fig. 20. Scenario 2: The final workspace for scenario 2, with a slim,
arcing path and support for heavy loads at all points.

Fig. 21. A highly skewed load distribution, as shown by the scented slider

problems which hamper progress:

• The inspection tool (hovering the cursor) is essential, but provides
no direct way to measure distances, leaving this up to the user.
This is an easily automated task, making the absence of such a
tool all the more frustrating.

• Different, but closely related parameters cannot be adjusted to-
gether. For example, in scenario 1, the researcher wants both
motors to have the same torque output. Manually adjusting both
to match with each change is frustrating, and again easily auto-
mated by adding a ‘lock’ button or multi-parameter scaling option.
This type of option would also be useful for scaling the two length
parameters together.

• The weights of the arm’s segments being excluded from the load
calculations might lead to overly optimistic specifications for the
arms. This is tricky to address – there is no obvious mapping
from lengths to weights without making significant assumptions
about how the arm will be constructed. Having a system which
converts the specifications to 3D files could help solve this, as
the physical properties of parts of different lengths could then be
estimated with reasonable accuracy.

8.1 Other Issues

Outside of those identified by the scenarios of use, there are several
remaining problems with Robovis. In my view, most of these amount to
a lack of ‘polish’, rather than critical failures in the approach. Problems
include the lack of a key for the load heatmap, and scaling problems in
general: the configuration sliders naturally have capped upper values,
and the main view displays at a fixed 1 mm : 1 pixel scale, limiting the
maximum dimensions of the arm under consideration according to the
user’s display resolution. Logarithmic scaling helps the slider problem
to some degree, but there are no mitigating factors for the view scaling.
In addition to not actually being displayed, the load heatmap’s key is
also static: the colors map to a fixed range of load values, so large
and/or powerful arm designs display a washed-out heatmap which is of
little use to the user. This was partly due to difficulties in establishing a
dynamic range for the load values, as the distribution is typically highly
skewed – this is shown on the load histogram, which itself cuts off a
large portion of the distribution’s upper range. When there is a large
disparity between the actuator and elevator torque values, this skew can
become very pronounced – see Fig. 21. A reasonable solution might be
to pick a range which starts at 0, and extends to cover some percentage
of the load samples (for example, 90%).

Other minor issues include the lack of numbered labels on the
scented slider, and a problem with the display of the preview bar-
chart where the middle (current) bar is out of alignment with the overall
trend – see Fig. 22. For whatever reason, this error cycles on and off
when the user hovers over (selects) a parameter repeatedly.

Finally, I would have liked to add the ability to alter the configuration
through a selection idiom. I had originally intended to allow the user to
directly select the ghost outlines and load previews, making the selected
outline’s configuration the new current configuration. This was not
implemented due to time constraints.

Fig. 22. Barchart artifact where the central bar does not follow the trend:
the correct view is shown on the left. Inspection reveals that this is indeed
an erroneous result, as the load value for the current configuration in this
image does in fact sit in-between those of the surrounding configurations.

Fig. 23. Future work: Bounding box concept for displaying the dimensions
of the current workspace

8.2 Future Work
Near-term future changes would mainly involve fixing the more minor
problems described above, and some polishing work. In no particular
order:

• Add a numbered key for the load heatmap, with a dynamic range
adjusted to include the majority of the sampled values.

• Identify the cause of, and correct, the barchart display artifact.

• Add a sliding, numbered scale to both the load histogram and the
preview barchart.

• Dynamically adjust the view (zoom in/out) to fit the arm’s
workspace.

• For the inspectors and heatmap, continue to display areas which
are below the load threshold, but still physically reachable, using
a grayed-out color or other visual distinction. This would provide
additional context for users looking to expand the reachable range,
or who are flexible with load requirements.

• Add a bounding box around the workspace to display its dimen-
sions – Fig. 23.

More ambitious changes would involve new features and enhance-
ments beyond simple “fixes”. One obvious addition would be imple-
menting the planned selection idiom for ghost outlines and the “preview”
bar chart, allowing the current configuration to be updated by clicking
the displayed items. Adding ruler guides and a spatial grid behind the
main display would allow the user to maintain greater awareness of the
scale of the arm they are working on.

Fig. 24. Future work: 3D view mockup in CAD software, showing the
intersection of a target cuboid workspace and a revolved robot arm
workspace.

Even further afield, I believe the basic visualization approach taken
here could be extended with additional robotic performance goals. Both
maximum velocity and acceleration are relevant performance metrics
which will also vary significantly over the workspace of the robot, and
could be brought under consideration using much the same techniques
as for the maximum load: scented widgets with adjustable minimums,
and heatmap displays. Adjustable minimums would naturally incor-
porate these performance metrics into Robovis’ ghost displays, in the
same way as for the load values.

When showing Robovis to my peers, some commented on the lack
of a 3D display: while this may not be particularly useful in isolation [6,
Chapter 6], it would provide additional context to new users who might
otherwise be unsure how to interpret the ‘sliced’ default view. It could
also prove a powerful feature if combined with volume rendering and
user-defined shapes of interest: by displaying the intersection between
the workspace volume and user-defined shapes (Fig. 24), users could
define their own workspace requirements in three dimensions, and
intuitively evaluate how well the current configuration fits them.

I would also be interested in seeing how my approach could be
extended to a greater variety of robotic arm designs, beyond the simple
palletizing robot focused on here. This might include SCARA robots,
which also operate primarily in a single plane [4].

On the user interaction side, undo/redo for the configuration changes
would allow users to return to a known good state in the application;
changes would not have to be lossy.

8.3 Lessons Learned
In general, I need to focus more on the user experience, and should
perform some scenario testing as early as possible in development of a
user-facing tool like this. The testing here has shown some issues with
Robovis, such as the inability to measure distances directly, which are
both frustrating and which would have been fairly straightforward to
address.

It is possible I would have been able to add more of the ‘polish’
the application is missing if I had spent less time working to increase
responsiveness; however, this responsiveness in the face of significant
data transformation requirements is an aspect of the tool I’m particularly
proud of, and without this real-time responsiveness, the tool’s interface
would have had to work quite differently – relying, I suspect, on iterative
selection of configurations rather than fine-grained user-driven changes
to the parameters. I cannot say conclusively if I made the right decision,
as I cannot judge the effectiveness of hypothetical interface choices,

and I am unable to say for certain how much further I would have gotten
while taking a different path. Perhaps the lesson here is to prototype,
in order to try different options before making a final decision: my
choice was not made on evidence, but on a gut feeling that a real-
time interactive application would be more engaging and yield faster
iterations on arm configurations than a less responsive version.

9 CONCLUSIONS

While this tool is in some ways incomplete, lacking features – like
distance measuring tools, and multiple views – which one would ex-
pect from what amounts to a specialized CAD application, the results
presented here are extremely promising. As demonstrated by the usage
scenarios, even lacking these additional features, Robovis allows a user
to come up with novel and highly specialized designs for robotic arms
in a way that is quick and intuitive. With additional work, I believe this
could be turned from a promising prototype to a powerful rapid design
tool.

REFERENCES

[1] W. G. Hao, Y. Y. Leck, and L. C. Hun. 6-DOF PC-Based Robotic Arm
with Efficient Trajectory Planning and Speed Control. In International
Conf. Mechatronics (ICOM), pp. 1–7, May 2011. doi: 10.1109/ICOM.2011
.5937171

[2] N. A. M. Johari, H. Haron, and A. S. M. Jaya. Robotic Modeling and
Simulation of Palletizer Robot Using Workspace5. In Computer Graphics,
Imaging and Visualisation (CGIV), pp. 217–222, Aug. 2007. doi: 10.1109/
CGIV.2007.73

[3] D. Keefe, M. Ewert, W. Ribarsky, and R. Chang. Interactive Coordinated
Multiple-View Visualization of Biomechanical Motion Data. IEEE Trans.
Visualization and Computer Graphics, 15(6):1383–1390, Nov. 2009. doi:
10.1109/TVCG.2009.152

[4] H. Makino. Assembly robot, July 1982. US Patent 4,341,502.
[5] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-

gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design Galleries: A General Approach to Setting Parameters for
Computer Graphics and Animation. In Proc. 24th Annual Conf. Computer
Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 389–400. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1997. doi: 10.
1145/258734.258887

[6] T. Munzner. Visualization Analysis and Design. CRC Press, Sept. 2014.
[7] B. Roth and K. Gupta. Design Considerations for Manipulator Workspace.

Journal of Mechanical Design, 104:705–713, 1982.
[8] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Moller. Visual

Parameter Space Analysis: A Conceptual Framework. IEEE Trans. Visu-
alization and Computer Graphics, 20(12):2161–2170, Dec. 2014. doi: 10.
1109/TVCG.2014.2346321

[9] W. Willett, J. Heer, and M. Agrawala. Scented Widgets: Improving Naviga-
tion Cues with Embedded Visualizations. IEEE Trans. Visualization and
Computer Graphics, 13(6):1129–1136, Nov. 2007. doi: 10.1109/TVCG.
2007.70589

	Introduction
	Related Work
	Robotic Manipulator Analysis
	Vis Design
	Parameter Space Exploration

	Data and Task Abstractions
	Configuration Data
	Inverse Kinematics & Load Calculations
	Workspace Data

	Task

	Solution
	Workspace View
	Ghosts
	Inspectors – Arm Visualization
	Readout and Load Preview
	Interface Design

	Implementation
	Workspace Calculations
	Asynchronous Compute

	Results
	Scenarios of Use
	Scenario 1: Sorting Cards
	Scenario 2: Moving Cans

	Discussion and Future Work
	Other Issues
	Future Work
	Lessons Learned

	Conclusions

