
Visualizing	Work	Process	in	
Software	Engineering	with	

Developer	Rivers

Presenter: Arthur	Sun

Michael Burch, Tanja Munz, Fabian Beck, and Daniel Weiskopf
VISUS, University of Stuttgart, Germany

Outline
•What’s	the	current	problem for large software projects
•What’s the previous solution for large projects InfoVis
•What the paper presents
• DataSet
• InfoVis Encoding Technique
• Visualization Method
• Sample Usage

• Future Improvement

Large	open-source	projects:	560,519	commits Large	open-source	projects:	5659	contributors

Large	open-source	projects:	441	releases What’s	do	we	want

A	whole	picture	of	the	overall	progress of	extreme large	
software	engineering	project	proceeding	with	time	
frame in	detailed	visualization	for	major	participants,	
their	contribution	to	respective	work,	how	much	
amount	of	work they	did	and	their	work	change

Previous	work	– Sankey	Diagram

Sankey	diagrams	
are	a	specific	type	
of	flow	diagram,	in	
which	the	width	of	
the	arrows	is	shown	
proportionally	to	
the	flow	quantity.

Problem:
No	Time	Frame

Previous	work	– Gantt	Chart

A	Gantt	chart	is	a	type	of	bar	chart	that	illustrates	a	project	schedule.	Gantt	
charts	illustrate	the	start and	finish	dates	of	the	involved	tasks.	Modern	Gantt	
charts	also	show	the	dependency
Problem:	1.	Doesn’t	show	how	many	people/resources	involved	in	project
2.	Don’t	have	a	whole	picture	about	the	project

What’s	the	author	propose

• A	graph	flow	which	can	not	only	show	the	interconnection	of	
different	modules	of	development	along	with	the	timeframe	
but	also	the	programmer	who	took	part	in	the	whole	project	
with	vivid	color	to	show	difference

Visualization	Technique

DataSet: Developer Activity	Model

Encoding: Develop	River	for	Time-Varying	
Developer	Activities

Dataset: Developer	Activity	Model
1. Abstract	commit	as	c,	time	as	t,	developer	name	as	d,	files	

as	f,	all	files	as	F,	file	modules	hierarchy	as	H

Partition	sequence	of	commits	into	equally-sized	intervals	for	each	interval	of	commits	and	every	module

Calculate	individual	developer	activity	of	their	files	for	each	module	and	reach	
module	specific	developer	activity

Calculate		weighted	transition	matrix	for	each	developer	Mi =	Mat((l+1)*(l+1))

Calculate	the	weighted	transition	matrix	for	all	developers	by	summing	up	Mi

Paper didn’t show how to map real data into Activity Model Matrix

Developer	Rivers

Mapping	Activity	Model	Matrix	into	Develop	Rivers	without	intersection

Developer	Rivers

Mapping	Activity	Model	Matrix	into	Develop	Rivers	with	intersection

Developer	Rivers	Curves
1. Transition:	how	developers	change	their	behavior	between	different	module	groups	

using	cubic	Bezier	Curves
2. Transition	color	is	a	linear	gradient	from	color	of	start	module	to	target	module

Influents
Developer	join	current	step

Effluents
Level	the	main	river

Paper didn’t show how to link Matrix Data with Bezier curve creation



Developer	Rivers	Curves

Effluents
Leave	the	main	river

Effluents
Leave	the	main	river

Diagram
• Inflow/Outflow:	A	transition	from	or	to	the	outside	of	the	diagram	
identifies	a	developer	enter	or	leaving	the	project
• Constant	Flow:	An	intra-transition	with	a	constant	width	indicating	a	group	
of	developers	constantly	working	on	the	same	module
• Growth/Decline:	An	intra-transition	with	an	increasing	or	decreasing	
strength	hints	at	a	group	of	developers	that	keep	working	on	a	module	but	
with	changing	total	effort	
• Split/Merge:	A	module	that	is	split	into	or	merged	from	multiple	flows	
shows	a	qualitative	change	of	developer	activity	(i.e.,	developers’	relative	
focus	switches	between	modules).	While	at	least	one	inter-transition	is	
required	for	this	pattern,	one	of	the	flows	can	be	an	intra-transition.	
• Exchange:	A	pair	of	intra-transitions	connecting	two	modules	in	opposite	
directions	at	the	same	time	is	a	specific	qualitative	change	of	activity:	some	
developers	move	between	the	two	modules	in	both	directions.	

#developers

drivers fs arch kernel net Documentation

2006 2007 2008 2009 2010 20122011 2013

Fig. 8. Linux main module overview, 2006–2013, 1-year interval.

different collection of modules being most active; in particular,
buildbot (a continuous integration framework) draws consid-
erable attention of developers. Only the scripts directory has
major activity across all considered periods, but the developers
are largely changing (considerable inflows and outflows).

B. Linux Kernel
The second project for this case study is the Linux kernel.

Although we were only able to retrieve a part of the project’s
history, this part is already at least one order of magnitude
larger than the Python project: its Git repository for 8 years
from January 1, 2006 to December 31, 2013 contains 408,555
commits by 11,048 developers.

1) Project Overview: Figure 8 provides the project
overview for the following directories selected as modules
(descriptions accoding to the Linux Documentation Project5):

• drivers: “the system’s device drivers” (red)
• fs: “file system code” (blue)
• arch: “architecture specific kernel code” (green)
• kernel: “main kernel code” (pink)
• net: “kernel’s networking code” (cyan)
• Documentation: documentation files (orange)
In contrast to Python, the Linux kernel did not undergo an

extensive growth of changes in the studied period (however,
we also study a shorter period), but just a slight growth.
A minor exception is the year 2013, where development
activity slightly declined with respect to the previous year. It
is further interesting to note that the overall pattern created
by the flows is quite similar across all periods: a small
inflow distributed among all selected modules (relative to their
size in the period), a similar but even smaller outflow, large
constant flows for all modules, and only small inter-transitions;
only between drivers and arch, there are considerable inter-
transitions showing an exchange pattern—this might be partly

5http://www.tldp.org/LDP/tlk/sources/sources.html

Fig. 9. Linux developer sparklines of top 5 developers, 2006–2013, 0.5-years
interval.

explained through their size, but could also mean that these
two modules are related so that developers naturally switch
between them. In general, the development of the Linux kernel
seems to be an established work process with low amount of
variance in the developer activity.

2) Developers: Although the overall development activity
is quite stable, the most active developers within the modules
selected in Figure 8 change quite often over the full time
period. To further investigate the stability of developer roles,
Figure 9 shows developer sparklines for the top 5 most
active ones. We find, for instance, that some developers have
clear responsibilities that stay constant over time (e.g., Greg

Inflow

Constant Flow
Merge Growth

Exchange

Visual	Patterns
• Main	Module	Overview
• Consists	main	directories,	developers	and	their	contributors

• File	Type	Overview
• Automatic	definition	of	modules	by	file	types	

• Developer	Sparklines
• Highlight	top	5	star	developer	contributing	most	to	the	whole	project

• Subsystem	Details
• Modules	in	a	subdirectory	of	the	system	shows	details	of		a	specific	system

1991–1992

DocLib Modules Tools

1992–1993 1994–1995 1996–1997 1999–2000

Fig. 5. Python main module overview, 1991–2000, 2-years interval.

Fig. 6. Python developer sparklines of top 5 developers, 1991–2011, 1-year
interval.

van Rossum editing more documentation files (as confirmed
by using details on demand). These transitions fall together
with Fred Drake entering development and changing Doc files.
For the period of 1996–1997, the documentation effort was
considerably intensified, which can be traced back largely to
Fred Drake, who then became the most active developer of
Doc. After that, during 1999–2000, Fred Drake started also to
working in Lib and Modules and Guido van Rossum changed
his focus back to these parts—this causes the strong transitions
from Doc to the blue and green river between the last two
periods.

Generating developer sparklines for the top 5 developers
of Python allows to confirm most of these observations. The
Developer Rivers as shown in Figure 6 encode again the full
period of 1991–2011; since a stretched aspect ratio matches
the character of a sparkline, the temporal resolution can be

Fig. 7. Python subsystem details of the Tools directory, 1997–2011, 5-years
interval.

increased to one year per period. Studying the sparklines of
Guido van Rossum and Fred Drake, we see the increasing
effort in documentation and the subsequent switch of focus
towards implementation. But much more insight can be gained
based on these diagrams; just to name a few examples: Guido
van Rossum steadily worked less on the project during 1998–
2004 (with respect to changed files) followed by a sudden
peak in 2007. Georg Brandl joined the project late (2005); his
efforts switch back and forth between Lib and Doc. Benjamin
Peterson, in contrast to the others, started to contribute heavily
already in his first year. Jack Jansen had two unconnected
periods of high activity, while Fred Drake particularly focused
on Doc.

3) Subsystems: With these observations as a background, it
is now interesting to go into the details of the module structure.
As an example, we chose the Tools directory and mark some
of its main subdiretories as new modules. Figure 7 depicts the
subsystem details; due to limited space, we here restricted the
studied period to 1997–2011, divided into 5-years intervals.
The resulting diagram is quite different from those discussed
before: the overall number of changes is not increasing, but
roughly stays constant; there is a large variety of dominance
comparing two time periods; and there are many transition
connections between the different modules.

In the first period (1997–2001), scripts (a collection of
scripts for various purposes), freeze (a Python compiler for
Unix), pynche (a color editor), idle (a Python code editor),
and compiler (a Python bytecode compiler) assembled the
main activity. In the transition to the next period (2002–2006),
there is no considerable outflow—nearly all Tools developers
continued to work on the project, however, with overall less
activity while some other developers joined. Within the period,
scripts (see above), bgen (a source code generator), idle
(see above), and pybench (a benchmark suite) were most
active, following the strongest transitions between the two
first periods, considerable developer activity moved from idle
and compiler to scripts (split in idle and compiler, merge
in scripts). In the last period (2007–2011), we again find a

Python	main	module	overview Python	Developer	Sparkline	of	top	5	developers

Fig. 5. Python main module overview, 1991–2000, 2-years interval.

DocLib Modules Tools

1995 2000 2005 2010

1. Guido van Rossum

2. Georg Brandl

3. Fred Drake

4. Benjamin Peterson

5. Jack Jansen

Fig. 6. Python developer sparklines of top 5 developers, 1991–2011, 1-year
interval.

van Rossum editing more documentation files (as confirmed
by using details on demand). These transitions fall together
with Fred Drake entering development and changing Doc files.
For the period of 1996–1997, the documentation effort was
considerably intensified, which can be traced back largely to
Fred Drake, who then became the most active developer of
Doc. After that, during 1999–2000, Fred Drake started also to
working in Lib and Modules and Guido van Rossum changed
his focus back to these parts—this causes the strong transitions
from Doc to the blue and green river between the last two
periods.

Generating developer sparklines for the top 5 developers
of Python allows to confirm most of these observations. The
Developer Rivers as shown in Figure 6 encode again the full
period of 1991–2011; since a stretched aspect ratio matches
the character of a sparkline, the temporal resolution can be

Fig. 7. Python subsystem details of the Tools directory, 1997–2011, 5-years
interval.

increased to one year per period. Studying the sparklines of
Guido van Rossum and Fred Drake, we see the increasing
effort in documentation and the subsequent switch of focus
towards implementation. But much more insight can be gained
based on these diagrams; just to name a few examples: Guido
van Rossum steadily worked less on the project during 1998–
2004 (with respect to changed files) followed by a sudden
peak in 2007. Georg Brandl joined the project late (2005); his
efforts switch back and forth between Lib and Doc. Benjamin
Peterson, in contrast to the others, started to contribute heavily
already in his first year. Jack Jansen had two unconnected
periods of high activity, while Fred Drake particularly focused
on Doc.

3) Subsystems: With these observations as a background, it
is now interesting to go into the details of the module structure.
As an example, we chose the Tools directory and mark some
of its main subdiretories as new modules. Figure 7 depicts the
subsystem details; due to limited space, we here restricted the
studied period to 1997–2011, divided into 5-years intervals.
The resulting diagram is quite different from those discussed
before: the overall number of changes is not increasing, but
roughly stays constant; there is a large variety of dominance
comparing two time periods; and there are many transition
connections between the different modules.

In the first period (1997–2001), scripts (a collection of
scripts for various purposes), freeze (a Python compiler for
Unix), pynche (a color editor), idle (a Python code editor),
and compiler (a Python bytecode compiler) assembled the
main activity. In the transition to the next period (2002–2006),
there is no considerable outflow—nearly all Tools developers
continued to work on the project, however, with overall less
activity while some other developers joined. Within the period,
scripts (see above), bgen (a source code generator), idle
(see above), and pybench (a benchmark suite) were most
active, following the strongest transitions between the two
first periods, considerable developer activity moved from idle
and compiler to scripts (split in idle and compiler, merge
in scripts). In the last period (2007–2011), we again find a

Python	Subsystem	details	of	Tools	Directory

Fig. 5. Python main module overview, 1991–2000, 2-years interval.

Fig. 6. Python developer sparklines of top 5 developers, 1991–2011, 1-year
interval.

van Rossum editing more documentation files (as confirmed
by using details on demand). These transitions fall together
with Fred Drake entering development and changing Doc files.
For the period of 1996–1997, the documentation effort was
considerably intensified, which can be traced back largely to
Fred Drake, who then became the most active developer of
Doc. After that, during 1999–2000, Fred Drake started also to
working in Lib and Modules and Guido van Rossum changed
his focus back to these parts—this causes the strong transitions
from Doc to the blue and green river between the last two
periods.

Generating developer sparklines for the top 5 developers
of Python allows to confirm most of these observations. The
Developer Rivers as shown in Figure 6 encode again the full
period of 1991–2011; since a stretched aspect ratio matches
the character of a sparkline, the temporal resolution can be

1997–2001 2002–2006 2007–2011 

Fig. 7. Python subsystem details of the Tools directory, 1997–2011, 5-years
interval.

increased to one year per period. Studying the sparklines of
Guido van Rossum and Fred Drake, we see the increasing
effort in documentation and the subsequent switch of focus
towards implementation. But much more insight can be gained
based on these diagrams; just to name a few examples: Guido
van Rossum steadily worked less on the project during 1998–
2004 (with respect to changed files) followed by a sudden
peak in 2007. Georg Brandl joined the project late (2005); his
efforts switch back and forth between Lib and Doc. Benjamin
Peterson, in contrast to the others, started to contribute heavily
already in his first year. Jack Jansen had two unconnected
periods of high activity, while Fred Drake particularly focused
on Doc.

3) Subsystems: With these observations as a background, it
is now interesting to go into the details of the module structure.
As an example, we chose the Tools directory and mark some
of its main subdiretories as new modules. Figure 7 depicts the
subsystem details; due to limited space, we here restricted the
studied period to 1997–2011, divided into 5-years intervals.
The resulting diagram is quite different from those discussed
before: the overall number of changes is not increasing, but
roughly stays constant; there is a large variety of dominance
comparing two time periods; and there are many transition
connections between the different modules.

In the first period (1997–2001), scripts (a collection of
scripts for various purposes), freeze (a Python compiler for
Unix), pynche (a color editor), idle (a Python code editor),
and compiler (a Python bytecode compiler) assembled the
main activity. In the transition to the next period (2002–2006),
there is no considerable outflow—nearly all Tools developers
continued to work on the project, however, with overall less
activity while some other developers joined. Within the period,
scripts (see above), bgen (a source code generator), idle
(see above), and pybench (a benchmark suite) were most
active, following the strongest transitions between the two
first periods, considerable developer activity moved from idle
and compiler to scripts (split in idle and compiler, merge
in scripts). In the last period (2007–2011), we again find a

Python	file	type	overview

1991–1993 1994–1996 1997–1999 2000–2002 2003–2005 2006–2008 2009–2011

Fig. 4. Python file type overview, 1991–2011, 3-years interval.

1, 1991 to December 31, 2011 from the Mercurial repository
of the project. This dataset consists of 70,813 commits by
159 developers. This project forms a suitable example for
demonstrating our approach as it has reasonable size and
history. Since the same dataset has already been visualized
with code swarm [22], Gource [7], and Software Evolution
Storylines [23], it might be considered a form of benchmark.

1) Project Overview: Figure 1 gives an overview of the
project. For sake of readability and simplicity, we cut the
development history in clean periods covering only full years.
In particular, we split the history of the project into seven
periods each showing three years of development. Based on
the project’s documentation2, we selected four of the most
important directories of the project as modules:

• Lib: “The part of the standard library implemented in
pure Python.” (blue)

• Modules: “The part of the standard library (plus some
other code) that is implemented in C.” (green)

• Doc: “The official documentation.” (red)
• Tools: “Various tools that are (or have been) used to

maintain Python.” (pink)
One of the most obvious observations in Figure 1, which

shows the main module overview, is that the project underwent
a considerable growth with respect to numbers of changed files
during the studied period and modules. The growth was quite
constant, only with a slight decrease of changes during 2003–
2005. The activity in the individual modules roughly follows
the size of the modules in the project hierarchy: most commits
covered the Lib directory, followed by Doc and Modules; Tools
played only a minor role. This relation is mainly preserved
over the years, only with an exception in the years 1997–
1999, where Doc had the highest activity. This seems to be
a particular phase of documentation, which might have been
neglected during the early years of development.

Figure 4 shows the same time division as in Figure 1 but
divides the project by the six most frequent file types into
rivers (file type overview). Since file types largely conform
as the modules selected before (Doc ! .TEX, .RST; Lib !
.PY; Modules ! .C, .H; Tools ! [diverse]), most of the
above observation can be confirmed, such as the specific
phase of documentation in the third period. Additional to
that, Figure 4 provides some new insights: Visually quite

2http://docs.python.org/devguide/setup.html

apparent, during the last two periods, from 2006 and onward,
the documentation format has changed from .TEX (LATEX)
to .RST (reStructuredText), not instantly but gradually (two
main transitions between the orange and red river). As a
posting on the Python developer mailing list tells3, the idea
of switching the documentation had already been discussed
since 2002; Guido van Rossum, the initiator of Python, reacted
positively on the idea but was not directly convinced4. Another
observation from Figure 4 is that the role of Python files (.PY)
in relation to C code (.C, .H) is slowly increasing over the
development history: at the beginning, the number of changes
with respect to these two groups of files were nearly balanced,
while at the end of the studied period, more than twice the
number of changes referred to Python files than to C files.
Hence, the library code seems to have gained importance in
relation to the core implementation.

2) Developers: The labeled rivers of Figure 1 show who
was working on which part of Python. In general, the fluctu-
ation of developers’ activity was quite high because the main
developers of a river rarely stayed the same from one time
period to the next. Within a time period, different developer
names for the selected modules indicate a certain division of
responsibilities. Nevertheless, some developers (e.g., Guido
van Rossum, Fred Drake, or Georg Brandl) appear as main
ones of different modules. For the Doc directory, this is quite
natural because implemented functionality (in one of the other
directories) might need to be documented specifically.

As Figure 1 also shows, only few developers worked on the
project at the beginning with minimal fluctuation (at most 9
developers during 1991–1999). In the period of 2000–2002,
the project attracted many new developers and the number
of them jumped to 50 (maybe in the context of the release
of Python 2.0 in October 2000). Most of them kept working
on the project throughout 2003–2005, although the number of
commits declined slightly. From 2006 and onward, however,
the fluctuation of developers increased: Many developers that
were active between 2006–2008 did not continue working on
the project during 2009–2011.

In general, developers do not often seem to switch their
focus of work activity between the main parts: only few
stronger transitions can be observed in Figure 1. The few
existing transitions, however, may point to special events in
the history of the project. While transitions can be explored
interactively by retrieving additional information in tooltips,
restricting the time frame increases the temporal resolution.
We demonstrate this for the early years of Python, 1991–
2001, in Figure 5. The higher temporal resolution (now 2 years
instead of 3 years) and the vertical zoom much better reveal the
activities and transitions in the focused period. For instance,
we see that Guido van Rossum stayed the only main developer
of Python for a long time. A first interesting pair of transitions
from Lib and Modules to Doc between the second (1992–
1993) and third (1994-1995) period was caused by Guido

3https://mail.python.org/pipermail/python-dev/2002-April/022099.html
4https://mail.python.org/pipermail/python-dev/2002-April/022131.html

Linux	Developer	Sparkline	of	top	5	developers Linux	Subsystem	details	of	Tools	Directory

Future Improvements

• Show us how do the author organize the data(Data->Matrix)
• Show how to transfer the data into influents and effluents (Matrix-
>Influents)
• Provide tool ready for practitioners who can use developer river
directly(No description about how to tackle the dataset)
• Distinguished colors may be up to 10 colors, otherwise graph may be
hard to see
• Transfer the way to study software engineering research into social-
technical aspects of engineering research


