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Abstract—In this paper we present A Tool for Curating Genome Expression Signatures (ATCGes). Understanding biological 
principles and diseases require accurate observation of cells in their native tissue environment. Such observations of the dynamic 
cellular environment can be carried out with technologies like microarrays. Currently these tools measure the raw abundance of 
biological molecules and cell proportions act as a confounder for many statistical tests. There are techniques, so called 
computational deconvolution methods, that allow us to retrieve the relative cell proportions and control for them in analyses. All 
such techniques require a signature matrix of gene expressions.  This tool is designed to ingest microarray data, and allow the user 
to iteratively produce such a signature matrix. ATCGes focuses on information density, visual cues for candidate pruning, and fast 
iteration on signature matrix production. 

Index Terms—Microarrays, RNA, Deconvolution, Signature Matrix, Gene Expression, Flow Cytometry, FACS

 

1 INTRODUCTION 
Studying genomics data is difficult because techniques for 

observing cellular processes in-vitro are severely limited. However, 
the capabilities of tools for gathering data ex-vivo are exponentially 
increasing. Since the advent of sequencing, we have progressed to 
processing an entire human genome for approximately $1000. 
Furthermore, microarrays allow us to measure the gene activity of all 
of our 20,000 genes simultaneously.  

 
A major deficiency in microarray gene expression data is the 

inability to measure relative cell proportions. We are capable of 
saying that gene A is more highly expressed, but unable to separate 
the causes of increased expression versus increased cell proliferation. 
These are two very different phenomenons. Understanding cell 
population size is crucial to disease etiology. For example an 
increase in different subsets of immune cells can either mean your 

body is fighting or helping cancer progression [Ostrand-Rosenberg 
2008]. Another reason for measuring cell proportion is to control for 
its effects as a confounder in statistical analyses comparing gene 
expression between samples. 

Models that don't take cell proportions into account lose much of 
their statistical power. Since measuring cell proportions is costly and 
time intensive, we would like to computationally determine the 
relative cell proportions. 

 
Given the confluence of factors like cheaper sequencing, gene 

expression microarrays, and methylation microarrays, we'd like to 
deconvolute the mixture of cells back to their original proportions. 
This is known as the source separation problem. For any given 
matrix of expression, this is easy if it has an inverse and can be 
solved analytically.  

However, in cells, there are a host of issues to confront. The main 
ones being noisy measurements, linearly dependent rows,  and the 
large size of the expression matrix. Inverting the matrix is difficult 
when dealing with tens of thousands of measurements because this 
process is very computationally expensive O(N^3) even if all 
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Figure 1: An example of ACTGes in action. 



 

measurements were perfect and linearly independent. 
      

Many deconvolution techniques can quantify cell proportions in 
tissues where each cell subset has been individually measured. 
Examples include constrained projection [Koestler 2013], least 
squares [Abbas 2009], support vector regression [Newman 2015] and 
quadratic programming [Houseman 2012, Gong 2011]. All of these 
techniques require a known expression matrix derived from isolated 
cell subsets to estimate the relative proportion of cells in an unknown 
mixed sample. The crux of all of these deconvolution techniques is 
identifying a signature expression matrix that has nice properties. 
Essentially, we want differentially expressed regions that allow us to 
tease apart the different cell proportions. Manually looking through 
thousands of genes is not feasible. We want a way to quickly select a 
candidate gene signature matrix, deconvolute using one of many 
techniques described above, and then iterate if necessary. 

2 RELATED WORK 
To the author’s knowledge, there are no other tools aimed at 

curating a signature expression matrix. Instead, existing tools are 
aimed at visualizing the expression profiles and showing how the 
expression patterns are related. These tools tackle both between cell 
types and within cell type comparisons. In a single cell type, the 
other tools are trying to surface relationships between genes. 
Through the noise, we'd like to identify whether they work together, 
in which case they will be expressed together, or inhibiting, in which 
case one will be highly expressed when the other is not. The other 
task is to find relationships between samples for the same gene. In 
this setting, the sample is examined under several treatments or 
exists in different disease states. The task then is to identify how the 
patterns of expression for a single gene change across treatments or 
states. 

 
ATCGes is different because it facilitates a different goal, the 

identification of genes that have a profile unique to a particular cell 
type. These so-called biomarkers would be identified as outliers 
when approached with the perspective described above. Concretely, 
the other tools would identify a gene with a characteristic partition of 
samples where one sample expresses the gene differentially from the 
rest. While it would be theoretically possible to use the other tools to 
carry out such a task, in practice the resolution of the other tools 
make such identification infeasible. Additionally, ATCGes supports 
the production of a signature matrix that uniquely identifies each cell 
under inspection. Such an operation would require an external 
recording mechanism and doesn't allow the gestalt of the entire 
matrix to be examined. 

 
We briefly summarize the main approaches to visualizing gene 
expressions below.  

  

2.1 Clustering And Heat Maps 
Clustering is a technique for grouping objects based upon a 

similarity score. In this case, we calculate the similarity based upon 
gene expression. Clustering has been shown to group together genes 
that are co-functional or genes that have similar functions. Usually 
the cluster is encoded as a heat map with a red-green diverging 
colour map, a staple of biological visualizations.  

 
Eisen [1998], demonstrated a pairwise linkage clustering 
visualization that is adapted from phylogenetic tree reconstruction 
algorithms (See Figure 2). A tree of similarity is built between the 
genes and then they are colour coded to reflect their normalized 
expression levels 
 

Another method of clustering, called bi-clustering, attempts to 
cluster both the genes and experimental conditions simultaneously 
(See Figure 3). Gonçalves [2009], introduced a bi-clustering 
technique that could be used to understand gene expression time-
series data. The output is a filtered block of genes whose expression 
patterns move in sync over time. This is all displayed in a SPLOM-
like fashion, with each component represented by a line chart and 
visualizes a particular cluster of genes. 

 

2.2 Self Organizing Maps 
Another technique that is used to understand expression profiles 

is the self-organizing map (See Figure 5). To create a self-organizing 
map, one starts with a simple geometry like a rectangular grid. These 
points are then projected k-dimensional space occupied by the gene 
expression data and then shifted iteratively towards the data points. 
Each point moves towards the data point in proportion to the distance 
away from the data point. After many thousands of iterations, the 
map will identify clusters of genes with similar expression patterns. 
Once again, this can be displayed in a SPLOM-like fashion to 
visualize the per-cluster expression patterns.  

 

Figure 2: Pairwise clustering from Eisen (1998) 

Figure 3: Biclustering example from Gonçalves (2009) 



2.3 Dimensionality Reduction 
Since the expression of k genes can be interpreted as a vector in 

k-dimensional space, it is natural to attempt dimensionality 
reduction. Bushati [2011] demonstrates the use of t-SNE and PCA in 
projecting the k-dimensional space down to 2D that is amenable to a 
scatter plot (See Figure 4). The data is grouped by treatment, in this 
case embryo development stage, and overlaid onto the graph. There 
are also embedded line charts showing the expression of particular 
gene subsets in different experimental conditions. 

 

3 DATA AND TASK 

ATCGes is designed to work on gene expression data from 
microarrays. Microarrays measure the quantity of a biological 
molecule, in this case RNA, present in a sample. A cell expresses 
genes in the form of RNA and the microarray allows us to translate 
this into a luminance measure based on the fluorescence of particular 
wells.  

In microarray experiments, we will measure the expression 
levels of approximately 20,000 genes in a few dozen cells. Each cell 
will have a few (< 10) replicates to quantify the variance in 
expression within the same cell type.  

Our problem is to use these measurements to choose a signature 
matrix that consists of a set of genes, called biomarkers, which are 
differentially expressed between the cell types. The identification of 
such biomarkers can proceed in stepwise fashion because each gene 
can be considered independently. Once a set of biomarkers is 
identified it would be saved and used as input for various 
deconvolution algorithms. 

3.1 Abstracted Data 
We are dealing with tabular data. The expression matrix consists 

a 4 dimensional cube. The axes are cell type, gene identifier and 
replicate identifier and the value is the luminance measure. The scale 
of each axis is as follows: dozens of cells types, tens of thousands of 
genes, and between one and ten replicates. The keys are categorical 
(gene identifier, cell type identifier, replicate identifier) triplets and 
the values are quantitative between 0 and 120,000 representing 
luminance of the microarray spot. 

 

The task is attempting to produce a subset of the gene identifiers 
(categorical) that will act as the signature matrix able to distinguish 
between all these cell types. 

3.2 Abstracted Task 
At the high level, the user is attempting to produce a set of gene 

identifiers by annotating genes whose expression can distinguish 
between the different cell types. These genes must be saved, along 
with their expression data, into a candidate solution in the system. 

During the search, the target is known. The user is looking for a 
specific feature, a gene that is differentially expressed in one or two 
cells against the background cells. A good biomarker is a gene that is 
differentially expressed with low variance between cells of the same 
type but with a mean expression level that is easily distinguishable 
from cells of other types. The location is unknown and we are 
searching through approximately 20,000 genes.  

In attempting to identify a gene that acts as a good marker for the 
cell a user would compare the expression of a single gene across the 
different cell types. 

Once a gene is found, it is recorded into the basis matrix for 
export and use in downstream analyses. 

4  SOLUTION 

From the high level perspective [See Figure 6], the system 
partitions the visualization into two juxtaposed views. The view on 
the left shows the candidate genes for the cell currently under 
consideration, termed the current cell of interest. The view on the 
right records the current partial solution. Upon completion of the 
task, the right view will contain a visual encoding of the full solution 
to be used in downstream analyses. 
 

4.1 Data Retrieval And Preprocessing 
All sample data used for the initial design and implementation of 

ATCGes comes from the Gene Expression Omnibus (GEO), a public 
repository for microarray experiments. In particular, we used the 
experimental data by Abbas et al. [2005] from their study of whole 
blood deconvolution. 

 
 
 
 

Figure 4: t-SNE from Bushati (2011) 

Figure 5: Self Organizing Map 
from Tamayo [1999] 



 

The dataset comes from GEO [Edgar et. Al 2002, accession 
GSE22886] and consists of microarray measurements of 12 immune 
cell types (B cells, CD14+ cells, CD4+ CD45RO+ CD45RA- T cells, 
CD4+ T cells, CD8+ T cells, IgG/IgA memory B cells, IgM memory 
B cells, Monocytes, NK cells, Neutrophils, Plasma cells from bone 
marrow, and Plasma cells from PBMC). Each cell type has multiple 
replicates totalling 228 samples. Each sample is assayed for the 
expression of 22,283 genes. 

From the raw dataset, we used custom R scripts to pre-process the 
data as follows. Expression data from GEO consists of cell identifier, 
gene identifier and replicate number. Each replicate has a cell type 
and gene. We group by (cell type, gene identifier) pairs and have 
multiple replicates in each group. The expression values in each 
group are averaged to get a mean expression for that gene in that cell 
type. We also compute the standard deviation of each group. 
Expression levels are then normalized on a per-gene basis using 
Mahalanobis distance (Equation 1) to bring them into a common 
scale for visualization.  

(x − µμ) ⁄ 𝜎 

Equation 1: x is raw gene expression measure, 𝛍 for mean 
expression data for that gene, 𝝈 for variance of 
expression. 
4.2 Visualization 

ATCGes works in a stepwise fashion where the user concentrates 
on selecting the signature gene for one cell at a time. When the user 
initially starts the tool, it will have a preselected cell of interest, in 
this case monocyte-Day1-A, that is displayed at the top of the cell 
labels in the left view [See figure 7]. 

The tool focuses heavily on information density. A main design 
consideration was to keep all information relevant to the next 
decision within the field of view. We chose the heat map and stylized 
boxplot, reducing boxes to just lines, because it scales well to the 
dimensions present in our problem. 

4.2.1 Initial Screen and Mean Expression Encoding 
The initial screen displays genes identifiers along the top axis, 

and cell identifiers along the side. The heat map encodes normalized 

expression data on a per-gene basis, i.e. vertically. Strongly 
expressed genes are green and strongly inhibited expressed genes are 
orange with yellow being the neutral ground. The exact expression 
values are unimportant because we are focusing on the relative 
difference of expression per gene group. Thus, the legend of colour 
to expression value is purposefully omitted to reduce the cognitive 
load of the user.  

4.2.2 Variance Encoding 
Directly below the heat map is an aligned stylized box and 

whisker plot. The vertically grouped plots show the expression levels 
for the gene directly above it across the different cell types. The bar 
for the cell of interest is highlighted in red and all other cells are in 
grey. In each box and whisker plot, the greyed out bars have reduced 
opacity and are also horizontally jittered. This is to prevent visual 
occlusion and guarantee that the expression levels of each gene for 
the cell of interest are always prominently displayed. 

 The level of visual occlusion encodes one aspect of a good 
biomarker candidate. Namely, we are attempting to identify a gene 
whose expression level for the cell of interest is well separated from 
the background expression of other cells. This directly maps to a low 
level of visual occlusion of the red bar in the box plots. 

 Furthermore, the size of the variance bars indicates how much 
the expression fluctuates between cells of the same type. The other 
metric that determines a good biomarker is a good separation from 
other cell types. This can be seen via both the heat map and the 
variance bars. In the heat map, the expression should be at the 
extremes of the spectrum, either bright green or bright orange. In the 
boxplot, this would be encoded as the red bar being at either the top 
or bottom edge of the plot, with not many grey bars overlapping. 

4.2.3 Interaction Idioms 
Several interaction idioms were added to improve the usability of 

the system. Due to the high information density, the propensity to 
misclick became readily apparent in early iterations.  

Figure 6: High level overview of ATCGes Figure 7: (Left) Before mouse over of gene. 
(Right) After mouse over. Notice the bolded gene 
label on top and the box around the relevant 
variance bars. 



We added responsive elements to the visualization to indicate the 
exact position of the mouse pointer. Upon hovering over clickable 
labels, we change the cursor and highlight the label that is to be 
activated. Clicking a cell label will change the current cell of interest 
and redraw the entire left panel. The cell of interest will move to the 
top and candidate genes for that cell will be filtered and displayed to 
the user. The colour encoding is also remapped to the new range of 
values. 

Similarly, hovering over a gene label will highlight the gene of 
interest. Clicking on a gene is an indication that we will be using it as 
the biomarker for the current cell of interest. The gene is added to the 
partial solution in the view on the right  

 In the variance plots, we found that the horizontal jitter reduces 
the discernibility of the variance plots between gene groups. To 
ameliorate this, we use linked highlighting to emphasize the 
corresponding variance plots associated with that gene. This 
manifests as a grey border that appears when the user’s cursor is 
hovering over a particular gene, and then disappears once the cursor 
is moved.  See (See Figure 7 Left and Right). 
 

4.2.4 Partial Solution Encoding 
The partial solution, displayed on the right of Figure 1, shows the 

current genes that we have in our current expression signature. This 
encoding is very similar to the encoding of the candidate genes on 
the left. The only notable difference is that in the candidate gene 
view, the variance bars in red are always for the cell of interest. In 
the partial solution, the variance bar in red is for the cell at the 
matching index. For example, the variance bar that is highlighted in 
red that is second from the left is encoding the expression variance 
for BCell-Memory-IgG-IgA,-A rather than Monocyte-Day1-A. This 
is because the partial solution is interested in the differential 
expression of particular gene/cell pairs as opposed to just the 
differential expression of the genes themselves holding the cell 
constant.  

4.2.5 Candidate Gene Filtering Algorithm 
Microarrays measure tens of thousands of genes, but not many 

can serve as biomarkers. When attempting to identify a biomarker 
for a cell type, we look for genes that have distinct mean expression 
values for that cell type along with low variance to minimize the 
chance of overlapping expression values. To allow the user to focus 
on only the viable candidates, we implemented a filtering algorithm 
that removes genes that are unlikely to be good biomarker 
candidates. The algorithm is described in Equation 2. 

 

4.3 Alternatives 
During the design of ATCGes, several alternative visual 

encodings were considered.  
Initial implementation relied upon variable sized view panes for 

each heat maps to account for the differing number of candidates of 
each cell. This resulted in an unacceptable level of visual flux during 
transitions and was phased out for a fixed width approach. 

Our strongest visual encoding, the variance plots with 
transparency, was initially just a standard boxplot. We found the 
visual occlusion to be intolerable and collapsed each box into a line. 
In addition, we added the transparency effect that coincided well 
with the separability of a biomarker.  

Furthermore, we initially started with arbitrary ordering of the 
labels. This was confusing because each step results in a complete 
rendering of both the candidate genes on the left and the partial 
solution matrix on the right. This was very disorienting. To keep 
some visual anchors and minimize the label re-orders, we modify the 
partial solution matrix labels by removing the current cell of interest 
and inserting it below the previously bolded cells. This gives the 
appearance of constancy for the top portion of the partial solution 
and a shifting down of the bottom incomplete portion. 

 

5 IMPLEMENTATION 
This project was implemented using R [Gentleman 2009] for the 

data processing and D3.js [Bostock 2011] for the visualization 
system itself. All data was retrieved from the Gene Expression 
Omnibus [Edgar 2002] and several helper libraries including 
underscore.js, colour brewer [Brewer 2001] and Bioconductor 
[Gentleman 2004] were used.  

 

5.1 Data Retrieval And Cleaning 
To retrieve the data from GEO, we used the Bioconductor 

package available through the CRAN repository. The GEO ID for 
the data set is GSE22886. The data is loaded into a Bioconductor 
data structured called a Large Expression Set, optimized for 
microarray data. Using Hadly Wickam’s excellent data cleaning tool 
packages tidyr and dplyer [Wickam 2014], we aggregated and 
calculated summary statistics as described in section 4.1. The data 
was then serialized and saved as JSON using the rjson [Couture-Beil 
2013] library. 

5.2 Browser Implementation 
The visualization was implemented using Mike Bostock’s [2011] 

D3 library. Initial inspiration was taken from Tom May’s day/hour 

1. Initialize candidates array to 
empty and cell of interest to 
the current cell of interest. 

2. Group data triplets of (cell 
identifier, gene identifier, 
expression value) by gene 
identifier. 

3. In each group, sort by gene 
expression value descending. 

4. If the top cell identifier or 
bottom cell identifier in each 
group matches the cell of 
interest and passes a certain 
difference threshold to the 
second candidate, add to 
candidate pool.  

5. Return candidates 

Equation 2: Candidate Gene Filtering Algorithm 



 

heat map [May 2015]. The starting code was examined for 
implementation idioms and styling themes. We then proceeded to 
code the heat map de-novo.  The bulk of implementation work 
involved properly modularizes the code to minimize recoding many 
of the idioms. 

During the coding phase, there was a heavy emphasis on creating 
high-level procedures that lays out large portions of the visualization. 
For example, the same code draws both the left view and the right 
view of the visualization. This was enabled by the relative 
orientation styling options supported by both CSS and SVG. The 
idea is to make the rendering code extensible enough to support the 
modifications unique to each piece. A particularly tricky piece of 
implementation involved the relative ordering of the genes and cell 
labels on the axis. Both the left and right views required these labels 
but in different ways. In the left view, the cell labels only needs to 
specify the cell of interest at the top, and all other labels can be in 
arbitrary positions. In contrast, the cell labels on the right must 
maintain their ordering because it corresponds to the order in which 
the user makes progress on the task. Similarly, the gene ordering in 
the left view doesn’t matter because they are all equal candidates for 
a particular cell of interest. Once again, on the right the ordering is 
significant because the index or relative position corresponds to the 
relative position of the cell for which it is the biomarker. 

Other design considerations included the use of CSS styling to 
keep a unified theme throughout the visualization. In addition, we 
used Colour Brewer [Brewer 2001] to create a diverging colour map 
for the expression signatures. We chose the green/orange colour map 
because it is close to the ubiquitous green/red colour map used by 
biologists and provides sufficient visual separation for distinguishing 
the candidates. 

6 RESULTS 
Here we present a sample walkthrough of ATCGes in action. A 

user will have performed a microarray experiment and wants to 
perform analyses on the resulting data. Directly using the microarray 
data has many drawbacks, specifically the confounding factors of 
cellular proportion differences in samples [Shen-Orr 2010]. To 
control for these factors, the user would run the data through a 
deconvolution pipeline within which ATCGes would be the first 

step. 
The data is first cleaned and reformatted into JSON as described 

in section 5.1. Then the data is loaded into ATCGes to produce a 
visualization that would look similar to Figure 7 (Left). The user 
examines the current gene candidates by hovering the mouse over 
genes (Figure 7 Right) and examining their expression distributions 
expressed in both the heat map and the variance plots. When a good 
gene candidate is identified (See Section 4.2.2), the user will click on 
the gene, adding the first biomarker to the partial solution (See 
Figure 8). 

The user then selects the next cell in the list to consider. In this 
case it would be Bcell-Memory_IgG_IgA-A, which is second. After 
a series of steps, each identified biomarker is added to solution (See 
Figure 9 and 10). When the user is finished, he will have a bolded 
line for each gene of interest and a full set of biomarkers to be used 
in the deconvolution pipeline (See Figure 1 for an example). 

 

 

 

Figure 8: After adding the first gene to the partial 
solution view.  

Figure 9: ATCGes after adding 3 biomarkers, 
one of which is a terrible marker. 

Figure 10: ATCGes halfway through the process. 
Notice the strongly coloured diagonal encoding 
the markers.  



7 DISCUSSION AND FUTURE WORK 

7.1 Strengths 
After completing the project, we found that the signature 

selection problem is strongly amenable to being cast as an 
information visualization task. The iterative nature of the problem 
lends itself well to a high information density encoding and 
interaction with step-wise candidate selection. We were very pleased 
with how the entire partial solution can always be kept within the 
frame of view.  

Our initial implementation of the variance bars used a more 
classic rendering of box-plots and suffered heavily from visual 
occlusion. This led to our stylized boxplots where the boxes are 
reduced to just lines. After dialling the opacity down on the 
background genes and colour encoding the gene of interest, we 
arrived at a very powerful visual cue for biomarkers. The perception 
of a good marker as well separated from the group with small range, 
matches our intuition on the traits of a good biomarker.  

Another aspect that caught us by pleasant surprise is how much 
interactivity adds to the experience. The authors have previously 
curate genes for expression signatures and the interactivity allows 
backtracking out of bad solutions. Often, the greedy approach will 
select a gene that is a good marker for cell A, which might have 
dozens of candidates, but then leaves cell B with no candidates 
available. With ATCGes, we can quickly backtrack and swap out the 
biomarker for cell A and freeing up the gene for use as cell B’s 
biomarker. 

7.2 Weaknesses  
We are still unsatisfied with the encoding of biomarkers in the 

right view of ATCGes. Once a biomarker has been selected, the 
colouring in the variance plots is no longer consistent. Each red bar 
denotes a different cell’s expression of the vertically aligned gene. 
This encoding makes sense in the left panel because we only 
consider one cell at a time. Given more time, we would further 
iterate this encoding to avoid any confusion for the user. Another 
issue is that the markers are either expressed at the bottom or top of 
the range for each gene. This results in our sight line bouncing up 
and down. A better approach would be selective inversion along with 
a glyph to indicate the orientation rather than the current approach. 

Furthermore, the current interaction flow requires too much 
clicking and mouse navigation. This is certainly not the ideal user 
experience and definitely merits some improvement. Another UX 
issue pertains to the colour mappings. Due to the nature of the 
problem, the expression values in the map skew much further to the 
high end because there is a physical limitation that a gene isn’t 
expressed and the value is 0. Thus the normalized bins don’t spread 
the data equally across the colour bins. A better approach would take 
this skew into account to make better use of the colour space.  

7.3 Future Work 
Currently, the most pressing issue is to integrate ATCGes into a 

full deconvolution tool chain. That would allow us to benchmark the 
output signatures against manually curated signatures without the 
tool and provide an objective measure of improvement. In addition, 
each deconvolution technique has unique properties and our 
perception of a good signature matrix with ATCGes may not be well 

matched to the deconvolution tool. Thus, it is imperative that we 
measure absolute performance in a production setting. 

Additionally, we would like to add a heuristic to sort the 
candidates in order of relevance. We believe that a human is required 
to make the trade-offs between separability and variance in 
expression. However, we can certainly take steps to minimize the 
number of comparisons a human would have to make. This would 
have the added benefit of improving the user experience through a 
confirm and modify approach to signature selection rather than the 
currently implemented hunt and peck navigation. 

7.4 Conclusions 
We believe that ATCGes is a strong addition to the cell 

deconvolution tool chain. To the author’s knowledge, no such tool 
exists and signature matrices are currently curated through a heuristic 
approach on the raw data. This has yielded reasonable results but 
doesn’t allow for the rapid iteration on signature matrices that 
ATCGes enables. Previous work on deconvolution often only 
considers well-separated mean expression values and ignores the 
variance measures available. ATCGes allows the consideration of 
both separability and variance of expression of the entire signature at 
once.  

Furthermore, current deconvolution methods rely on an accurate 
and well-chosen signature matrix to perform their computations.  
Still, we are only capable of understanding very well characterized 
tissues like whole blood. As we stretch our methods and attempt to 
understand more complex tissues, the need for good signature 
matrices becomes more pressing. For the foreseeable future, highly 
complex tissues may never be fully characterized and deconvolution 
must move towards a more iterative model than at present.  

In conclusion, we hope that ATCGes enables users to create 
better gene expression signatures for the cell deconvolution problem. 
There is still much work to be done on improving the scalability, 
user interface and integration of our tool. In the grand scheme of 
things, ATCGes is just one tiny step on the way to fully 
understanding the dynamic environment inside of all cellular life. 
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