

 1

Status Update: Judicial Case Law History Timeline

(November 2015)
Ken Mansfield, CPSC 547

Abstract—The aim of the Judicial Case Law History Timeline is to provide a solution to visualizing the citations (cross-

references) between case decisions (written judgements) related to the treatment of particular legal concepts over time for legal

research and collaboration. The dataset is dynamically queried from data parsed from the BC Laws Database.

—————————— ——————————

1 INTRODUCTION

WO weeks has elapsed since the project proposal, this
document will serve as an interim update.

2 WORK COMPLETED

2.1 Chord Diagram

Judicial cases can cite many cases and be cited by many
more. These citations can be viewed as a network similar
to a social network where children nodes can be linked to
many other nodes. For this visualization the chord dia-
gram idiom has been chosen for its ability to encode a con-
siderable amount of information with limited occlusion of
important data.

Data-Driven Documents (d3) [1] has been chosen as the
technology of choice by the collaboration parter, Knomos
Inc. [2]. The chord diagram example from the d3 website
[3] provides example source code that is easily extensible.
The first proof of concept iteration is to encode case cita-
tions in each of the chords and link cases together. This is
achieved by constructing a matrix that defines these conne-
cions:

 [[5, 5, 5, 5],

[10, 5, 0, 0],

[10, 0, 5, 0],

[10, 0, 0, 5],]

2.2 Constructing the Matrix

The data is provided by querying the Knomos web server’s
API which responds with structured JSON data. Each API
response returns the data for a single judicial case. This
would be enough to construct a graph with one parent and
it’s nodes but for a more complex visualization we need to

iterate over more cases. To do this we need to make itera-
tive asynchronous queries over the child nodes to collect
2nd degree nodes. Once this data is collected into javascript
objects pushed into a matrix-array we can construct our
chord diagram with live-data.

2.3 Visualizing Live Data

Adding a text field and a submit button enables the user
to select the primary case they wish to build the chord-di-
agram for and initiates the load. Since several API requests
are needed to build the matrix, the visualization takes ap-
proximately 20 seconds to load. A simple loading counter
is provided to list how many requests have been made.

Once the matrix has been built the chord diagram visu-
alization could be made with live-data. This iteration took
its style (and some source code) from the dependency
wheel visualization [4]. This iteration of the visualization
made it evident that the nature of the data has a big effect
on how the visualization would look and many changes
would need to be made. The dependency wheel example
had a carefully thought out gradient colour which did not
come out right in the visualization. On top of that, the data
we had loaded had many links coming out of the primary
case and it’s children, allowing them to have wide chords,
but the 2nd degree nodes have no references loaded mean-
ing they had 0 width causing crowding and text occlusion
(a figure could not be provided because this version no
longer works do to server API changes). This was some-
what alleviated by increasing the 2nd degree nodes widths.
A new colour scheme was included for the current itera-
tion (Fig. 3).

————————————————

 Ken Mansfield, UBC M.Eng student. E-mail: kmansfield@ ece.ubc.ca.

T

Fig. 1 First work. Initial test of the chord diagram.

Fig. 2 The user interface.

2

3 OBSTACLES AND CHANGES

The first obstacle that was encountered was the inability to
query the server API directly via javascript in the browser.
Apparently this is a common limitation for security rea-
sons. The server team eventually added a “CORS header”
to the API to allow remote API queries. The other option
would have been to make a local proxy server but this
would have the limitation that it would not be visible to
others.

The next obstacles came in the form of API changes.
First the JSON structure changed requiring a client side
change to parse the data differently. Next the API became
password protected, requiring an account to be created

and authentication code to be added to the client. These
changes exemplify some of the issues of dealing with an
external, live server data.

After initial work with the chord diagram several prob-
lems have arisen. Links between chords have a specified
width that are different on both ends. For case references it
is unclear what this width should encode. Links are not di-
rectional so it unclear whether a link from chord A repre-
sents a cites or a cited-by link. It is also unclear what is en-
coded by color in this iteration. Opposing chords have dif-
ferent colours, but links between the chords have the color
of one chord or the other. This coloring might be useful for
encoding directionality.

4 RELATED WORK

There are many popular ways to visualize network data.

4.1 Events in the Games of Thrones

The first example suggested by the Knomos team was the
“Events in the Game of Thrones” visualization by Jerome
Cukier [5]. Each link between one bubble node to another
indicates a kill. The visualization is a very creative way to
depict the interactions between Game of Thrones Charac-
ters, but it falls short as being useable as production level
software. For example, there is no indication of who killed
who (ie. which direction) between nodes connected by
lines. The visualization is also crowded with no labels on
the bubbles, the user must hover over a node to determine
the character’s name and then hover over the node that it
links to, to determine who that character killed or was
killed by.

4.2 Initial Project Proposal

The proposed modification would use a similar layout
as above:

 Each node represents a case decision, clustered by
jurisdiction (eg. Supreme Court of Canada).

 The size of the node represents the frequency of
the case’s citations throughout other cases deci-
sions.

 The color of each node signals the relative treat-
ment of that case decision in other cases (eg. Green
= favourable, yellow = distinguished, red = over-
turned).

 The lines between nodes represent interactions
(the citations) between case decisions.

 The time control scrollbar can be shifted to adjust
the visualiztion, and stopped at a specific point in
time.

 Content scope can be filtered by including or re-
stricting the years or jurisdictions selected be-
neath the scrollbar.

In the original “Events in the Game of Thrones” visual-
ization the nodes were grouped by families and kills
mostly happened between one family to another. For judi-
cial cases, citations are most likely to come from the same
group (ie. within BC Laws). It is highly likely that all cases

Fig. 3 Current iteration of the d3 chord diagram.

Fig. 4 Current visualization with the mouse hovering over the primary
chord allowing the user to view all its links.

AUTHOR ET AL.: TITLE 3

could all pertain within one jurisdiction so grouping the
cases this way with lines (citations) looping back to the
same group would be difficult to distinguish. Addition-
ally, for this project we are limiting our data to one juris-
diction so the depicted clustering will not work.

A character is usually killed only once, meaning there is
only one link coming into it. For judicial citations, there is
likely to be a many to many relationship. With the large
clusters in the Game of Thrones visualization it is hard to
see where the lines are coming in and out.

4.3 Node-Link Layout

The most common idiom for visualizing network data is
the Node-Link Diagram. The Judical case data would be
very easy to adapt to this approach as each case could be
thought of as a node and the citations can be thought of as
links. The d3 Force-Directed Graph visualization [6] is a
popular example employed by many. One glaring issue
with this approach is that text label occlusion is likely due
to the location and density of nodes, as well as link occlu-
sion in large clusters. The force directed graph is already
used by Knomos as well so it is useful to study different
approaches.

4.4 Other Social Networks

Citation networks can be thought of as a type of social net-
work. Adapting this to judicial cases, we could think of the
primary case as the “ego”, and it’s children citations as “al-
ters”. A recent paper, egoSlider [7], specifically focuses on
viewing the changes of an ego’s network over time. The
approach that they have taken would not lend itself well
to judicial cases, however, because a case does not persist
over time the same was a human does. Judicial cases have
a single time-stamp so it would not make sense to analyze
things like tie-strength.

5 FUTURE WORK

The purpose of the visualization is to dynamically view the
case citation changes over time, so the next logical step
would be to add a timeline and animate it.

REFERENCES

[1] Mike Bostock, “Data-Driven Documents,” d3js.org. 2015.

[2] Adam La France, Jesse Abney, “Knomos,” www.knomos.ca.

2015.

[3] Mike Bostock, “Chord Diagram,”

http://bl.ocks.org/mbostock/4062006. 2012.

[4] François Zaninotto, “Dependency Wheel,”

http://www.redotheweb.com/DependencyWheel/. 2013.

[5] Jerome Cukier, “Events in the Game of Thrones,”

http://www.jeromecukier.net/projects/agot/events.html.

2015.

[6] Mike Bostock, “Force-Directed Graph,”

http://bl.ocks.org/mbostock/4062045. 2012.

[7] Yanhong Wu, Naveen Pitipornvivat, Jian Zhao, Sixiao Yang,

Guowei Huang, Huamin Qu, " egoSlider: Visual Analysis of Ego-

centric Network Evolution," IEEE Trans. Visualization and Com-

puter Graphics, vol. 22, no. 1, Jan 2016, (IEEE Transactions)

Fig. 5 Proposed visualization based on the Events in the Game
of Thrones visualization.

