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Fig. 1. A screenshot of our system, deepviz, being used to inspect the similarity of deep features on a dataset of “faces in things”.

Abstract— Deep learning has become, over the last few years, the technique that achieves the best results in a series of challenging
machine learning tasks such as speech and object recognition. However, arguably no other field has seen greater progress derived
from deep learning as computer vision, where deep convolutional neural networks have quickly become the standard for computational
vision recognition. While computer vision is often associated with computational object recognition; other problems in computer vision
have extensively benefited from the use of features extracted from deep networks. One such common problem in visual recognition
is visual retrieval, often also called “image-based” image search. The state of the art in this problem is heavily driven by benchmarks
of object instance retrieval, and is defined by the use of features extracted from deep neural networks. In this work, we argue that
a sense of visual similarity is often loosely defined, and in practice is not limited to exact object instance matching. The goal of this
project is to create a tool that allows researchers to quickly verify whether a technique for image retrieval works well for other tasks.
We introduce deepviz, a tool that given an image datset allows researchers to quickly answer the question: do deep features work for
retrieving X?.

Index Terms—Computer vision, deep learning, convolutional neural networks, image retrieval

1 INTRODUCTION

Computer vision is a subfield of artificial intelligence focused on de-
veloping algorithms that can infer concepts from images in a way that
mimics the human understanding of the visual world. Common tasks
in computer vision include object recognition, image classification,
object localization and image parsing (labelling every pixel in an im-
age). Developing algorithms that can perform such tasks at or above
human performance is a problem that has eluded researchers for over
half a century, and is considered by many a fundamental challenge
towards a full understanding of intelligence. Having fully-functional
computer vision systems promises to bring, for example, better au-
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tonomous driving systems (potentially saving millions of lives), im-
proved medical diagnoses, more robust security systems and easier
ways to develop more engaging entertainment.

While research in the early years of computer vision was heavily
focused on developing computational models that reflected the phys-
ical behaviour of light in the real world [26], during the last decade
research in the field has shifted towards data-drive methods. With the
advent of the Internet and ubiquitous, cheap consumer-grade cameras,
it become easier to compile datasets with millions of images, such
as Imagenet [13] and Microsoft’s COCO [18]. Together with deep
convolutional networks trained on consumer-grade GPUs [17], object
classification has dramatically improved so much over the past years
that it is now virtually considered a solved problem; for instance, the
Imagenet competition for 2015 is not considering an image classifica-
tion task anymore.



Notably, the progress brought about by convolutional networks did
not stop at the task of image classification. Crucially, in May of
2014 Razavian et al. [20] conducted 11 experiments on datasets fo-
cused on diverse visual tasks such as scene classification, fine-grained
categorization, instance retrieval and attribute prediction, and demon-
strated that using features extracted from deep convolutional networks
achieved performance either competitive with, or better than the state
of the art at the time. This astounding result showed that there was a
relatively straightforward way to taking advantage of deep networks
to improve all visual recognition tasks.

The correct way to test whether deep features can improve a certain
task is to do what Razavian et al. did: (1) get the data, (2) obtain labels,
(3) put together a recognition pipeline, and (4) measure qualitative
results such as classification accuracy and precision-recall curves or
mean average precision – this has proven to be a solid way to quantify
progress in the field. Following all these steps, however, requires a lot
of work from the researcher. Often, it is very easy to get the images and
the features, and it is not hard for researchers to come up with ideas
of diverse visual tasks. For example, we have found ourselves often
wondering: would it make sense to use deep features to predict chess
positions from images of boards? or how well would deep features
perform on the task of finding faces in things? In both cases, getting
the data and the features can be done in a matter of days, but annotating
the data and putting together a full-fledged experimental setup would
take anywhere from a few weeks to a few months. Is there a way
in which we can help researchers get a feeling on what deep features
can do while avoiding them all the pain of putting together a complete
classification pipeline? We believe so, and this is precisely the goal of
this project.

We introduce deepviz, an online visualization tool that allows re-
searchers to quickly assess the similarities captured by deep features
on a particular dataset. Given only the data and the features, our sys-
tem combines a low-dimensional, space-filling embedding of the im-
ages in 2d that preserves neighbourhood similarities, and allows the
user to query for total orders of the dataset with respect to particular
images. The queries can then be compared to each other and exam-
ined in further detail at different points of the image ranking – not just
for the top matches, as it has traditionally been done. Please refer to
Figure 1 for a screenshot of our system.

Our tool can also be used to improve the way retrieval results for
new methods are shown to the public. Typically, computer vision pa-
pers will present qualitative results by showing a query image and the
top-retrieved neighbours in the dataset, often comparing 2 or more
methods on the same query (see Fig. 2). In contrast, our tool can
be used to explore different parts of the similarity distribution with re-
spect to the entire dataset, and to compare multiple query image results
and distributions side by side.

2 PREVIOUS WORK

The goal of this work is to provide a tool to quickly inspect the output
of an image retrieval system; however, a secondary goals is to allow
users to explore the whole dataset such that it facilitates the explo-
ration of image arrangements relative to a query. To compare visual
similarities, we must allow the users to explore the distributions re-
sulting from using several images as queries and thus, through several
examples, get an idea of which visual concepts are retrieved. For the
first part, we review work that focuses on image tiling for large visual
datasets, and for the second part we focus on work that addresses fo-
cus+context exploration in large image collections. Finally, we make
use of a dimensionality-reduction technique as a shorthand to explore
the neighbourhood of each image – we quickly review t-SNE, our tech-
nique of choice as well.

2.1 Image tiling
There is a large amount of previous work focused displaying multiple
images with different types of arrangement and tiling. Google images1

shows a set of relevance-sorted images in vertically-stacked horizontal

1https://images.google.com/

Fig. 2. Image reproduced from Aggregating deep convolutional features
for image retrieval by Babenko and Lempitsky [7], which illustrates a typ-
ical qualitative comparison of image retrieval in computer vision papers:
queries are shown at the left, and two retrieval methods are compared
by showing the top retrieved neighbours from the image dataset. Our
tool aims to provide a visualization to compare not only the top retrieved
neighbours, but any part of the retrieval curve.

layouts, controlling for height and preserving the image aspect ratio.
While it is not clear whether this visualization is optimal, it is probably
the one that people are most familiar with, and has been subsequently
been adopted by competing image search engines such as Bing and
Flickr. In 2009, Google introduced Image Swirl [1], which clustered
similar images in stacks along the z-dimension, and allowed users to
expand clusters for closer inspection. However, the service was only
available as beta, and seems to have been discontinued.

Recently, Brivo et al. [10] proposed using a Voronoi-based pari-
tition of the space to show multiple images in space-filling manner.
After a force-directed layout is computed from the query to the rest of
the dataset, a Voronoi diagram is used to resize and crop the images
relative to their distance to the focus image. The authors further pro-
pose a method to smoothly change the diagram when new images are
added or removed from the collection. The advantage of this method
is that it is easy to implement, and achieves space-filling in an uncon-
ventional way. The disadvantage is that the cropping of Voronoi cells
may confuse some users, who are mostly used to deal with rectangu-
lar crops. While the method is novel, the authors did not make a user
study comparing to a standard rectangular arrangement and cropping.

Wang et al. [25] propose a tiling of images around a central query
that uses size to encode importance. The query image is shown in the
center with maximum size, and the most relevant results are shown
around the image in a spiral layout, halving the size with each full
wrap around the query. The advantage of this method is that it conveys
the idea that retrieval importance is non-linear and rapidly decreases as
one explores images further down in the ranking. The downside is that
there is not an easy way to allow users to focus on images far from the
query, and that the spiral layouts makes it hard to compare the relative
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ranking of any two retrieved images with respect to the query.

2.2 Focus+context in image collections

The second task that we want to support is allowing users to explore
the image collection to use new images as queries, with the output of
a previous query as context. Previous work on focus+context in im-
ages is rather scarce. The only work that we are aware of is that of
Chen et al. [12] contrast and study sliding (where neighbours are sim-
ply pushed away) and expanding (where neighbours are re-arranged
according to a Voronoi diagram to better use the space) approaches to
focus+context exploration. They found that users prefer the expand-
ing (space-filling) approach in terms of “ease to use”, “efficiency” and
“fun”. This suggests that we should prefer visualizations that densely
populate the space in the focus+context exploration part of our tool.

A somewhat related work (although definitely closest in terms of
implementation) in this vein is the NYT Fashion Week front row visu-
alization by Michael Bostock [2]. The online system lets users explore
several front shots of models wearing designer clothes. The images are
aligned horizontally, and a 1-dimensional fisheye zoom focused on the
user’s mouse is used to expand the images for closer focus+context in-
spection. This is a simpler problem compared to ours, as (a) there is
already a precompiled visual structure and similarity in the pictures –
notice that a central slit is shown in the cropped images, and this slit
manages to give an idea of the attire –, and (b) fisheye zooming is only
done in one dimension, as horizontal scrolling is used to show the work
of different designers. In contrast, our work has to deal with changing
(computed on-the-fly) visual similarities, and also an arrangement in
2 dimensions.

2.3 t-SNE

t-SNE [24] is a common technique for dimensionality reduction that,
as opposed to visualization-agnostic techniques such as principal com-
ponent analysis, is particularly designed to yield good visualizations
in low dimensions of high-dimensional data points. The algorithm
assigns t-distributed probabilities for similarities in the high and low
dimensional spaces, and uses stochastic gradient descent to minimize
the KL-divergence between the probabilities in both spaces. Since
t-SNE heavily penalizes large distances in low dimensions for data
points that are close in the high-dimensional space, the results often
greatly preserve local similarities. We use this embedding as a proxy
to neighbourhood exploration in our tool.

3 DATA AND TASKS

In information visualization, the data is what we want to visualize, and
the task is the why we want to do the visualization [19]. Moreover,
the domain analysis is made in terms that require specific knwoledge
about the context of the task and the data, while the abstraction analy-
sis is made in made in terms of generic visualization objectives and id-
ioms, without requiring domain knowledge about the task or the data.
We explicitly separete both analyses below.

3.1 Domain data

The main input data for deepviz is an image collection of up to∼ 1000
images. In our case, we obtained our dataset downloading the images
from a the twitter account @FacesPics2; under the tagline admit it,
you see a face, the account broadcasts images of things where people
tends to see a face. As of December of 2015, the account had 505 000
followers, and had tweeted 850 pictures. We downloaded the images
using Tweepy [3], a python library that allows for easily dowloading
all the tweets of an account; we later parsed the resulting csv for urls
ending in .jpg and .png. In spite its name and tagline, the account often
tweets images that do not necessarily have a face, but will often tweet
images that are otherwise suggestive of other human, and sometimes
animal, body parts; we estimate that these images make up around
10% of the dataset. Figure 3 shows a sample of the images obtained
from the FacesPics twitter account.

2https://twitter.com/facespics

Fig. 3. Typical images from our dataset, as seen after cropping a cen-
tral square such that the smallest dimension is fully preserved. While
in most images it is fairly easy to see a face, it is not uncommon to
find other images that depict, for example, animals. For example, the
upper right image is a sign where one would see an elephant, and the
image to the left seems to have food that looks like a frog. There are
also some images with captions, such as the fried eggs that look like
an owl at the middle left. Finally, the second image in the next-to-last
row depicts a building, but it is not immediately clear what makes the
image particularly unusual or interesting. These images are good ex-
amples of the diversity found in our dataset. A complete tile of the im-
ages that we downloaded can be seen on http://jltmtz.github.
io/deepviz/imgs/facespics_128/bigtile.jpg

Preprocessing. In order to extract deep features, the images had
to be resized to a resolution of 224-by-224 pixels. The resizing was
done such that the smallest dimension was fully preserved. This is
also the representation that we used in our final visualization, as it
accurately reflects what the network “sees”, and therefore avoids mis-
leading the users into thinking that the entire image was taken into
account.

Feature extraction. After resizing, features were obtained by
passing the images through the 16-layer “very deep” network provided
by Simonyan et al. [21], commonly referred to as VGG-net. The net-
work consists of 16 convolutional layers with filters of size 3-by-3, and
5 rectified linear units, as well as two fully-connected layers that pro-
duce a d = 4096-dimensional feature. The network obtained the sec-
ond place on the 2014 Imagenet large-scale image classification com-
petition; while the top performance in the competition was achieved by
Goog-le-net [22], a network by the Google team, it has been repeat-
edly shown VGG-net obtains better performance on transfer-learning
tasks. Moreover, since VGG-net became publicly available shortly af-
ter the competition results were announce in the summer of 2014, the
network has become the de-facto standard to extract deep features for
vision tasks. The feature extraction process was used using an intel i7
CPU and took slightly above 2 hours for the 850 images in our dataset
– for a larger-scale dataset, it would be necessary to run this part of the
pipeline in a GPU.

https://twitter.com/facespics
http://jltmtz.github.io/deepviz/imgs/facespics_128/bigtile.jpg
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We want to note that, even though we used the output of the last
layer in our experiment, it is also common to use the output of pre-
vious layers for tasks other than image classification; in particular, it
has been noticed that the output of the last convolutional layer obtains
state-of-the-art performance on object instance retrieval [8, 7]

Distance computation. During training, the images are classi-
fied in 1 of 1 000 categories using a multi-class soft-max logistic re-
gression. While logistic regression has the advantage of easily provid-
ing a gradient for back-propagation, it is not immediately clear how
the features can be used for a retrieval task. Experimentally, it has
been shown that given 2 features x1 and x2, the Euclidean distance

d = ‖x1−x2‖2 =
d

∑
i=1

(
xi

1−xi
2

)2
(1)

yields good results for retrieval. Unfortunately, the Euclidean distance
is not upper-bounded (i.e., it can have any value between zero and
infinity), which can make it hard to compare different similarity dis-
tributions. Chatfield et al. [11] have shown, however, that a minimal
loss in performance can be achieved by pre-normalizing the features:
x̂ = x/‖x‖2 and using the dot-product similarity

d = 〈x̂1, x̂2〉=
d

∑
i=1

x̂i
1× x̂i

2, (2)

which is then equivalent to the cosine similarity used in linear support
vector machines. We opt for the dot-product similarity because it also
has the advantage of providing distances in the range [−1,1], which
we consider to be easier for users to compare, as well as easier to plot.
Moreover, as opposed to Euclidean distance, the dot-product similarity
can benefit from approximate distance computation techniques based
on multi-codebook quantization that use non-orthogonal codebooks
and define the state of the art in very large-scale image retrieval [6, 27]
– while our dataset was small enough to not require such techniques,
some type of compression will be indispensable in a larger-scale ver-
sion of this project.

3.2 Domain task
The task that we want to support is to help researchers understand
the similarities capured by deep features. The goal is to show re-
searchers an ordering of the similarities computed to all the images
in the dataset. Crucially, in our visualization task our data consists of
features, which define a raking computed by the machine, and images,
form which humans can judge similarity at a glance. Therefore, we
want to show our users both statistics about retrieval and the retrieved
images themselves. To facilitate the comparison of machine-computed
vs. human-computed image similarities is the main goal of deepviz.

3.3 Abstract data
Our data can be abstracted at two different levels: on one hand, our
images can be seen as generic tensors which happen to have a trivial
way to visualize. This “abstraction”, is not very useful by itself, but
it does suggest that displaying the images should not be a too-difficult
task. On the other hand, we can focus on the features, which provide
a mapping from the image space to a high-dimensional Hilbert space
H . In such space, similarities are trivial, though potentially computa-
tionally expensive, to compute via dot-product or Euclidean distance,
which provides with yet more derived data – for each image, one may
compute a total order of the rest of the images in the dataset, resulting
in a (n-1) real numbers that may be treated as a generic 1-dimensional
distribution.

3.4 Abstract task
We identified two main tasks exploration of the image dataset, and
comparison of queries. The exploration of the entire datasets allows
the user to familiarize themselves with the images in the dataset; plus,
if the exploration is done in a neighbourhood-preserving embedding,
the user can also get a sense of the highest matches for each image in
the dataset. The comparison has actually 3 dimensions to it:

1. Computed vs. perceived similarity. This means the user should
be able to compare the number that the retrieval system gives for
the similarity between a pair and images vs. how similar the user
perceives the images to be.

2. Computed similarity for many queries. The user should be
able to compare two similarity distribution using different im-
ages as queries.

3. Perceived similarity for many queries. The user should be able
to compare two perceived similarity from a query to the rest of
the dataset.

A summary of this what-why-how analysis is presented in Table 1.

Do deep features retrieve X?

What: Data
A dataset D of images D = {x1,x2, . . . ,xn} and
a set of image queries Q = {q1,q2, . . . ,qm}. Po-
tentially, Q⊆ D.

What: Derived

n d-dimensional features representing the
database, and m d-dimensional features for the
queries. A similarity measure for the derived
features S : Rd ×Rd 7→ R. Typically, for deep
features S( f1, f2) = ‖ f1 − f2‖2

2 or S( f1, f2) =
〈 f̂1, f̂2〉, where f̂ = f/‖ f‖2.

Why: Explore The user must be able to see all the images in
the dataset.

Why: Compare

The user can see the results of different queries,
and is able to compare them. There are 3 com-
parisons to be done: (1) the computed similarity
vs. the perceived similarity, (2) computed sim-
ilarities for different images, and (3) perceived
similarities for different data points.

How: dim. re-
duction

The data is preprocessed to lie in a
negihbourhood-preseving 2-dimensional
space. We use t-SNE on the derived features.

How: Encode

Each datapoint is displayed as a minified ver-
sion of its central crop. It has been shown that a
size of 32× 32 is sufficient to recognize objects
in images [23], so we use this encoding size by
default for exploration. We also use a size of
128 × 128 to show the queries, and 64 × 64 to
show the retrieved images.

How: Facet

A direct display of the low-dimensional em-
bedding might occlude the images, so a gridi-
fied version of the embedding is computed as
well. Tiling is trivial because all the images are
squares of the same size.

How: Small
multiples

Each query results in a distribution of similar-
ities across the entire dataset. We show mul-
tiple queries side by side in a pane next to the
embedding. Synchronized navigation and high-
light across the images and the distributions are
also provided.

Scale ∼ 1000 images, assuming a display of 1 920 ×
1 080 pixels.)

Table 1. What-why-how analysis of our system, deepviz.

4 SOLUTION

We had a 2-step process to reach our final solution design. While our
first iteration was deemed a failure, we think it is worthwile to share
and analyze the rational behind and the failure reasons for this first
iteration. We then show the eventual design of deepviz, and analyze
the strenghts that it has with respect to our first iteration.



Fig. 4. A first iteration to visualize image retrieval. In the three images, the query is at the center, and the most similar images wrap around it in
a spiral. The left-most image shows a moderate fisheye distortion focused at the centre, the middle image shows a more pronounced distortion
and the last image shows a more modest distortion, both focusing on different parts of the retrieval set. It can be appreciated that it is very hard
to distinguish the objects in the most compressed images, even for a modest distortion level. In practice, the animation was also reported to be
“dizzying” by two independent users.

4.1 First iteration
The first iteration of our design consisted of the merge of 2 ideas:

1. A grid arrangement to explore query similarities such as that
proposed in visdb [16]. In visdb, the query is shown at the center
of the image, and the most similar matches are shown around the
query in a spiral.

2. A fisheye distortion for focus+context exploration of the spiral
arrangement. This was inspired by the Fashion week visualiza-
tion of Michael Bostock for the New York Times [2]. the image
that end up with less space due to the distortion are not actually
resized, but cropped, which visually helps preserve proportions
and, in the case of fashion pictures, still conveys the attire being
worn.

The result of this first implementation is shown in Figure 4. Af-
ter using this implementation for a while, and showing it to two col-
leagues in the lab, it became apparent that the visualization was a fail-
ure. On one hand, the images are already quite small at 32 × 32 pix-
els, and further reducing their size (or cropping them) due to Cartesian
fisheye distortion makes most images barely recognizable. This is a
failure because the objective of focus+context is, precisely, to give
context around the focus: in this case, the context is distorted beyond
recognition, and rather becomes noise.

The second reason for failure, as reported by our colleagues and
ourselves, was that moving the mouse around and recomputing the
distortion results in too much motion in the visual field of the user.
This results in a sensation of dizziness. This result was surprising
and unexpected, but we believe that it confirms the rule of thumb “no
unjustified 2d” [19], and is in line with previous findings that have
shown that fisheye distortion can be disorienting.

4.2 Second iteration
Our second iteration built upon the lessons learned of our first itera-
tion, and opted for a more conservative approach. The solution con-
sists of 2 panes: a left pane that shows a gridified low-dimensional
embedding of the images – which primarily supports the exploration
task –, and a right pane that displays queries and their distributions –
for the comparison tasks.

The separation of panes allows a separation of the two tasks. As
opposed to the first iteration, triggering a query does not result in a
rearrangement of all the images. Rather, what the user has explored
remains unchanged and query exploration happens in a different pane.
This has the advantage that, once the user has found an interesting

neighbourhood, they can keep exploring the queries withouth having
to restart the search for a particular image. For example in Figure 1, the
user explores a cluster of laundry machine and then moves to explore
the presumably similar cluster of power outlets.

The right pane is dedicated to query exploration and has 2 main
components: a big chart for direct query distribution comparison, and
a tab to explore each query individually. When the user clicks on an
image in the left pane, this triggers a query – that is, a similarity to
every other image in the dataset is computer and sorted from high-to-
low. This produces a monotonically decreasing curve that we show
together with a canvas to explore the images that this similarity corre-
sponds to. Because we show both the computer similarity curve and
the retrieved images, our design allows users to compare the computed
vs. perceived image similarities. Moreover, since multiple queries can
be shown side-by-side, both computed and perceived similarities can
be visually compared for different queries. Finally, the top-most pane
allows for a more direct comparison the similarity curves by plotting
the curves on the same chart.

5 IMPLEMENTATION

We implemented deepviz using primarily javascript and d3 [9]. For
our first iteration, we used the Cartesian fisheye plugin provided by
Michael Bostock [4], and followed the tutorial by Irene Ros [5] to
learn how to draw images on a canvas. From browsing the code of the
New York Times’ fashion week visualization, we borrowed the idea of
using a large image tile to reduce the number of http requests: this had
a big impact in performance compared to our first implementations.

5.1 t-SNE gridification

For the gridification process of t-SNE, we used the static kd-tree
javascript library by Mikola Lysenko [?]. Despite it’s name, it actu-
ally uses a Voronoi diagram to accelerate nearest neighbour search in
2-dimensional spaces. This allowed us to reduce the time for gridifi-
cation from ¿20 seconds to ¡300 milliseconds to render the gridified
t-SNE. While this is not implemented in our current syste, this means
that we could potentially dynamically adjust to the grid to different
pane sizes while maintaining performance close to real-time.

The gridification of t-SNE was made in a greedy manner. For each
image in the dataset, the top k nearest neighbours in the grid are found,
and the image is assigned to the first empty spot found; the process is
repeated until all the images have a place in the grid. We found that
for k = 50 this process runs in under 300 milliseconds and takes less
than five iterations to find a place for all the images.



Fig. 5. The gridified t-sne embedding produced for our dataset. This
supports the task of dataset exploration, while giving a sense of (close)
similarities for each image.

5.2 Query distribution
We implemented the similarity search by brute-force: thanks to the rel-
atively small size of the dataset, there was not scalability problem on
this side. All the data was pre-processed in Python, using the standard
image library of Python 3 for cropping and resizing. For feature ex-
traction, we used the VGG-net implementation provided by Karen Si-
monyan together with Caffe [15] and its python bindings. The datasets
were all saved to disk using HDF5, and exported to json files using
Python’s native json library.

The similarity distribution plots were implemented using svg pan-
els with d3, and for their colors we used Cynthia Brewer’s color
palette [14]. The joint highlighting through the canvases and the query
plots was achieved by maintaining global arrays that store the brush
position and infer the position given the mouse coordinates over the
canvas. Where possible, closures were preferred over global variables,
but the observer pattern (i.e., the use of global “listener” variables) was
implemented for all the events that span more than one html element.

6 RESULTS

A global screenshot of our system is shown on Figure 1. The two main
components are the gridified t-sne pane and the query pane. Each merit
their own individual exposition.

6.1 Gridified t-SNE
When the user first interacts with our system, they are presented solely
with the low-dimensional gridified and minified embedding of their
data, as show in Figure 5. We confirmed that the a resolution of 32 ×
32 is sufficient to recognize the objects in the images. Since the im-
ages are heavily curated, and the objects tend to be centered and well-
focused, using a central crop to represent the image does not result in
significant drawbacks – but it makes tiling trivial and the arrangement
more organized. Clicking on an image results in a query being added
to the right pane of our system.

6.2 Query pane
A closer look at the queries pane is shown in Figure 6. In this case, the
user has decided to explore a cluster of peppers followed by a squash
and a potato. For each query, the similarity distribution is shown at the

Fig. 6. The queries as shown right after the user clicks on an image.

top and the corresponding images are rendered below. In this example,
we can see that the queries follow moslty an inverse Gaussian distri-
bution, but have subtle differences between them. While the peppers
form a tight cluster (as evidenced by their proximity in the t-SNE em-
bedding and the fact that they retrieve each other at the top), the first,
second and fourth pepper retrieve an image ofr an angry red pepper
with a wooden background. The third pepper does not show this im-
age among its top matches, but manages to retrieve another pepper that
is compared to the face of Sylvester Stallone. This suggests, for exam-
ple, that the queries are complementary, and that deep features are not
retrieving all the pepper faces for all the queries; however, this could
be alleviated with query expansion techniques, as the neighbours of
the top matches provide more diversity in the visual search.

Exploring similarity distributions The interface also allows the
user to explore different parts of the similarity distribution. In Fig-
ure 7, the user explores the tail of the similarity distribution. Looking
at the images, it is revealed that the top strawberries, which feature
shapes that are reminiscent of a chicken and a baby elephant, have
a similar tail; they, for example, share an image featuring jeans and
several indoors and vehicle pictures. The last picture also shares a mo-
torcycle image with the first query, and a round object with the second
query. This suggests that the similarity distributino is not affected by
the zoomorphic shape of the first two strawberries, but is shared by all
strawberries in the dataset.

Another example of this distribution exploration is show in Fig-
ure 8. In this case, the user explores the middle of the distribution, and
finds that the space is not consistent across the queries. Some queries
feature signs and animals, while others have coffee mugs and wash-
ing machines. Overall, there is no apparent structure at the middle of
the distribution. This is further confirmed by the synchronized ball
along the curves: the same image appears at very different places in
the distribution, showing that the same image is given very different
similarities for different queries. This suggests that, for deep features,
similarity distributions are consistent at the beginning and at the end,
but not in the middle.



Fig. 7. Queries of strawberries with a focus on the end of the distribu-
tion tail. The fact that the first two strawberries look like animals does
not result in distinctive dissimilarities compared to the less interestingly
shaped strawberry at the bottom.

Fig. 8. Queries of trees with a focus on the middle end of the distribution.
Unlike previous examples focused at the top and the end, there is no
clear structure in the images retrieved by these examples.

Query-to-query comparison Finally, we show an exmple where
two queries are compared against each other in Figure 9. The users
queries the system to compute the similarity of two music players that
have big eyes and an even bigger smile. While one would expect them
to have similar query distributions, a closer look at the plot reveals
that their similarities are, in fact, quite different from one another:
regarding the computed similarity, the bottom image produces a much
higher ranking from beginning to end, and regarding the perceived
similarity, we can see that the bottom image and is primarily match
to household items, such as electric plugs, a vacuum cleaner and even
some tolet paper. In contrast, the top image is matched against other
music players and car music systems. This example further confirms
that deep features probably do not retrieve faces in things (as in this
case they would retrieve other big-eyed, big-smile items), but rather
simply retrieve similar objects.

7 DISCUSSION AND FUTURE WORK

To the best of our knowledge, our work is the first to provide a tool
that allows users to explore image retrieval results at different simi-
larity levels. The low-dimensional embedding is effective at display-
ing neighbourhood relations, but we also found interesting relations in
queries at other parts of the similarity distribution.

One of the biggest limitations of our system is scale. For a fun
dataset like our “faces in things” this is not much of a problem, but
retrieval inevitably gets harder as more and more images are added to
the database, since there is a higher potential for confusion. Typical
datasets in academic benchmarks have around 100 000 images, and

Fig. 9. Two queries of music players one next to the other.

our system is far from handling such numbers.

7.1 Lessons learned
Valuable lessons were learned from this project; among them, that

1. the “no unjustified 2d” rule of thumb by Munzner [19] proved
especially true for our first iteration

2. fisheye lenses can be easily abused, and feel disorienting

3. moving images quickly around the field of view of the user can
easily lead to a design that causes dizziness

4. pixels are a very precious resource: it is extremely easy to come
up with designs that need more pixels than most users have.
In our case, we programmed everything in a desktop computer
with a big monitor, and did not realize that laptops tend to have
smaller screens.

On the more technical side, we also learned that javascript is way
faster than it was a few years ago: we were surprised that little opti-
mization was necessary to achieve real-time performance for our sys-
tem.

7.2 Future work
Future work should focus mainly on usability: we ran out of time to,
for example, allow users to delete their queries, or to give them the
option to choose the sizes of the images in the t-SNE embedding and
in the queries. We would also like to add a resize option to the embed-
ding panel, and synchronized highlighting in the canvases (both for
queries and the embedding). Finally, we would also like to add a visu-
alization that matches the images ranking in a pair of query similarity
distributions explicitly, for example, by linking with lines two query
lines – this would help users to explicitly see the correlation among
queries in a way similar to parallel coordinates. It would also be help-
ful to remove duplicated images, of which we found around 5, as whe
they are found they give the sense that the data has not been adequately
preprocessed.

8 CONCLUSIONS

We have introduced deepviz, a system that allows user to explore the
similarities captured by deep features in medium-sized image datasets.
We have shown our implementation on a dataset of faces in things,
and demonstrated multiple uses cases for query comparison, visual
similarity comparison, and similarity exploration in a gridified low-
dimensional neighbourhood-preserving embedding. Our system al-
lows, for the first time, an easy exploration of diffent parts of the simi-
larity distribution for image retrieval systems, in contrast to traditional
visualizations where only the top matches are available.

Our implementation is open source, and is hosted publicly on
https://github.com/jltmtz/deepviz. Similarly, a live
demo with the faces in things datset can be accessed online at
jltmtz.github.io/deepviz.

https://github.com/jltmtz/deepviz
jltmtz.github.io/deepviz
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