
Do deep features retrieve X?: A tool for quick

inspection of deep visual similarities

Julieta Martinez
julm@cs.ubc.ca

November 2015

1 Introduction

Computer vision is often associated with computational object recognition; that
is, given an image of an object, predicting a posterior probability over a label
set that corresponds to the objects depicted in the image. While it is true
that this is the visual task that has experienced the largest improvement over
the last couple of years, largely thanks to variations on the seminal work of
Krizhevsky and colleagues [Krizhevsky et al., 2012] based on deep convolutional
neural networks, other problems in computer vision have extensively benefited
from the use of features extracted from deep networks.

One such common problem in visual recognition is visual retrieval, which
is defined as the task of, given a query image q and a dataset of images D =
{x1, x2, . . . , xn}, producing a total order that ranks the elements in D with
respect to their similarity to q. It is expected that this order will produce a
ranking that is semantically meaningful to people, such as retrieving objects
of the same class, or with otherwise similar visual characteristics. The state
of the art in this problem is heavily driven by benchmarks of object instance
retrieval, and is defined by the use of features extracted from deep neural net-
works [Razavian et al., 2014, Babenko and Lempitsky, 2015].

While most retrieval benchmarks are focused on instance retrieval, we argue
that a sense of visual similarity is often loosely defined, and in practice is not
limited to exact object instance matching. The goal of this project is to create
a tool that allows researchers to quickly verify if a technique for image retrieval
works well for other tasks. Since the state of the art in visual retrieval is
currently defined by deep features, we think that in practice our tool will allow
researchers to quickly answer the question do deep features work for retrieving
X?.

2 Datasets

We plan to use two datasets, each with different and unconventional tasks

1



• Faces in things (FiT) dataset. We plan to collect a dataset by down-
loading the images of the twitter account @FacesPics1, which mostly
contains images of objects where people tend to see a face. The task
on this dataset is determining whether deep features can retrieve similar
“facial expressions” in objects. For example, does a query of a grumpy
toaster return other grumpy appliances? This is a medium size dataset of
approximately 800 images.

• Vision papers (VP) dataset. We will download the papers from the
ICCV 2013 and CVPR 2013, 2014 and 2015 conferences, which are publicly
available2, and create images by concatenating the pages of the papers.
A task in this datasets is to quickly check if deep features capture some
similarity in the papers; for example, does querying with a paper on optical
flow return other papers on the same topic? or, does querying with papers
authored by the top computer vision researcher Florence Fictitious return
other papers by her group? This will be a large dataset of 2 000+ images.

3 Personal expertise

I am familiar with the task of visual retrieval, but I have only done video to
mocap matching [Gupta et al., 2014, He et al., 2016], not single image match-
ing. Over the last year, I have worked on a technique to improve the speed and
accuracy of approximate nearest neighbour search in high dimensions based on
multi-codebook quantization, which is often the computational bottleneck of vi-
sual retrieval systems (and I might re-implement to speed up matching) – said
work is currently under review for CVPR 2016.

I work in computer vision and I am often tempted to investigate whether
deep features can capture unconventional visual similarities, but I am also often
deterred by the need to set up a whole retrieval infrastructure and the difficulty
to assess the quality of the matchings.

4 Proposed solution

We propose to implement a system similar to VisDB. We use the what-why-how
framework to describe our system in Table 1.

5 Scenario of use

We next enumerate a series of steps that the user would perform in a typical
exploration scenario, where the user has the question do deep features retrieve
happy faces in things? in mind. A sketch of our system in this use case is shown
in Figure 1.

1https://twitter.com/FacesPics
2http://www.cv-foundation.org/openaccess/menu.py

2

https://twitter.com/FacesPics
http://www.cv-foundation.org/openaccess/menu.py


1. The user points their browser to the url of our viz app. We have already
included the faces in pics images and features for them.

2. Initially, the pictures are shown in a randomized space-filling layout. The
user thus has an overview of the pictures in the database.

3. Before querying, the user sets an appropriate image size that gives enough
context, and activates the fisheye lens to explore parts of the dataset in
detail.

4. The user double-clicks the image that they want to use as query. This
is an image of a “happy vacuum cleaner” (see Figure 1). The image is
smoothly moved to the center, while the query runs in the background.
This step should take less than a second.

5. Once the ranking is obtained, the images are rearranged from their current
position their position around the query according to the ranking.

6. The user explores the new arrangement of images, looking in detail at
some of the top matches. They repeat the process for a few more im-
ages of happy objects, and confirm that deep features are indeed good at
retrieving happy faces in things.

Some variations include (i) indicating another set of images and features
to use with a csv file of urls and features, (ii) making the initial arrange-
ment, instead of random, reflect a dimensinoality-reduced embedding of the
high-dimensional features.

6 Proposed implementation approach

I plan to do the application web-based, using D3 (javascript). This is with the
goal of maximizing the number of people who will potentially look at the app.

7 Milestones and schedule

• Data gathering of FiT and VP datasets. (Nov. 17)

• Implement a quick feature matching system in javascript. I’ll probably use
product quantization [Jégou et al., 2011], an easy-to-implement method
for fast approximate nearest neighbour search.

• Gaining familiarity with D3. This involves learning how to...

– represent images with varying sizes (Nov. 19)

– make the images not overlap each with other (Nov. 21)

– make the images fill the space (Nov. 19)

– use a fisheye lens (Nov. 24)

3



Figure 1: An example of what our interface would look like, not at scale (we
will show many more images), and without the fisheye lens activated. The
query is shown in yellow, and the most relevant images are shown around it.
In this case, we assume that deep features actually are good at retrieving facial
expressions, and a “happy vacuum cleaner” retrieves other happy items such as
a “happy lemon loaf”, a “happy chronometer” and a “happy mop” among the
top matches.

– animate the images to move them in the space according to a ranking
(Nov. 26)

– respond to a double-click by the user to trigger the reranking and
rearrangement of the database elements (Nov 28)

• Integrate the knowledge above into a single system (Dec 5). Run tests
with the FiV and VP datasets.

8 Previous work

Preliminarily, my work is loosely inspired by VisDB [Keim et al., 1994], but
applied to images From VisDB, I am borrowing the idea of spiral arrangement,
and the tiling of images. There is a large body of work on visualizations that
facilitated the exploration of personal photo collections (see [Huynh et al., 2005]
and references therein). The work dates from more than a decade ago, and

4



recognizes that visual retrieval systems are not very good at conveying semantic
similarities. Thus, they resort to time-stamps and text tags to organize large
collections of pictures. In contrast, my tool is used to argue that visual retrieval
is now mature enough to be used as the primary tool to search and explore large
image collections.

I found one journal article that describes a system similar to what I want to
develop, and is actually focused on non-personal image collections [Wang et al., 2013].
The authors propose iMap, a tree-based visualization that aims to both fill the
space and also respond quickly to additions and removal to the photo collection,
and demonstrated their tool on a dataset of pictures of astronomical objects.
iMap supports a spiral layout (see their Figure 2), with a space-filling layout
and also incorporates text-based tag similarity. Given a query, the autrhos use
a GPU to maintain interactivity; we will instead use a web interface, and hope
to achieve real-time retrievla speeds using approximate distance computations
with multi-codebook quantization.

Related to the focus+context part of our work, which we will achieve with a
fisheye lens, previous work by Chen and colleagues [Chen et al., 2013] focused on
benchmarking different ways to expand photos (where the user wants to focus)
surrounded by small tiles of other imagess (that provide context). They inves-
tigated a series of algorithms that smootly expand the desired picture, while
rearranging the pictures around them, and found that 2 methods, called sliding
and expanding are preferred by the users. These methods preserve neighbour-
hoods in the original layout, but do not fill the space. If time allows, we would
like to experiment with similar focus techniques in our tool.

References

[Babenko and Lempitsky, 2015] Babenko, A. and Lempitsky, V. (2015). Ag-
gregating deep convolutional features for image retrieval. arXiv preprint
arXiv:1510.07493.

[Chen et al., 2013] Chen, J., Xu, Y., Turk, G., and Stasko, J. (2013). Easyzoom:
Zoom-in-context views for exploring large collections of images.

[Gupta et al., 2014] Gupta, A., Martinez, J. L., Little, J. J., and Woodham,
R. J. (2014). 3d pose from motion for cross-view action recognition via non-
linear circulant temporal encoding. In CVPR.

[He et al., 2016] He, J., Gupta, A., Martinez, J., Little, J. J., and Woodham,
R. J. (2016). Efficient video-based retrieval of motion capture with flexible
alignment. In WACV.

[Huynh et al., 2005] Huynh, D. F., Drucker, S. M., Baudisch, P., and Wong, C.
(2005). Time quilt: scaling up zoomable photo browsers for large, unstruc-
tured photo collections. In CHI’05 extended abstracts on Human factors in
computing systems, pages 1937–1940. ACM.

5



[Jégou et al., 2011] Jégou, H., Douze, M., and Schmid, C. (2011). Product
quantization for nearest neighbor search. TPAMI, 33(1).

[Keim et al., 1994] Keim, D., Kriegel, H.-P., et al. (1994). Visdb: Database
exploration using multidimensional visualization. Computer Graphics and
Applications, IEEE, 14(5):40–49.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). Imagenet classification with deep convolutional neural networks. In
NIPS.

[Razavian et al., 2014] Razavian, A. S., Azizpour, H., Sullivan, J., and Carls-
son, S. (2014). Cnn features off-the-shelf: an astounding baseline for recog-
nition. In Computer Vision and Pattern Recognition Workshops (CVPRW),
2014 IEEE Conference on, pages 512–519. IEEE.

[Torralba et al., 2008] Torralba, A., Fergus, R., and Freeman, W. T. (2008).
80 million tiny images: A large data set for nonparametric object and scene
recognition. TPAMI, 30(11).

[Wang et al., 2013] Wang, C., Reese, J. P., Zhang, H., Tao, J., Gu, Y., Ma,
J., and Nemiroff, R. J. (2013). Similarity-based visualization of large image
collections. Information Visualization, page 1473871613498519.

6



Do deep features retrieve X?

What: Data
A dataset D of images D = {x1, x2, . . . , xn} and a set of
image queries Q = {q1, q2, . . . , qm}. Potentially, Q ⊆ D.

What: Derived

n d-dimensional features representing the database, and
m d-dimensional features for the queries. A similarity
measure for the derived features S : Rd × Rd 7→ R.
Typically, for deep features S(f1, f2) = ‖f1 − f2‖22 or
S(f1, f2) = 〈f1, f2〉.

Why: Tasks

Browse / explore. If the user has an image prototype
in mind, but can only find a similar image to what they
want, they can use our system to browse the closest
matches to their image in our system. The user might
also query the database with different images and in-
spect the top matches in search for a pattern (e.g.,
whether deep features match facial expressions).

How: Encode

Each image will be displayed as a minified version
of its central crop. It has been shown that a size
of 32 × 32 is sufficient to recognize objects in pic-
tures [Torralba et al., 2008], so we will use this as a
lower limit for the encoding size. The user will be able
to make the images bigger or smaller, and I still have
to find an algorithm to tile the images in a space-filling
manner.

How: Facet
The query will be shown at the center of the display, and
the returned database entries will be displayed around
it, wrapping in circles as in VisDB.

How: Focus+Context

There will be an optional fisheye lens for the user to
move around and see the retrieved images in more de-
tail. The idea is that the user will activate this feature
when the individual image size is too small to distinguish
the desired features in individual images, but wants to
preserve the context of the whole ranking.

Scale
TBD, since this will depend directly on the size that the
user chooses for each encoded image.)

Table 1: What-why-how analysis of the proposed infoviz solution.

7


	Introduction
	Datasets
	Personal expertise
	Proposed solution
	Scenario of use
	Proposed implementation approach
	Milestones and schedule
	Previous work

