
CameramanVis: Where the Camera Should Look
Jianhui Chen

Fig. 1. CameramanVis visualizes correlation between the camera angle and player locations for soccer games. On this screen, users
can browse the camera angles (top left) and features (top right) using brushes. A line char and a heat map will show the detailed view.
On the bottom left, the outlier view shows outlier pairs when users set an angle threshold for filtering data. The outliers are depicted
using side-by-side player locations (red dots) and multiple color maps on the soccer field. On the bottom right, the query view shows
camera angle distribution using gray histogram and black line chart. It also shows feature distribution using blue bar chart with error
bars when users set the query inputs using sliders.

Abstract— This paper introduces CameramanVis, an interactive visualization system for visualizing correlation between camera
angles and player locations for soccer games. The system supports computer vision researchers to browse the soccer data, to
identify camera angle and player location patterns, and to identify and compare outliers. The system visualizes camera angle, player
locations and their correlation using three multi-form views. The system uses linked-highlighting to coordinate multiple views. In
CameramanVis, we propose an intuitive spatial soccer field method to visualize features which are derived from player locations.
Some preliminary user feedback suggests that CameramanVis is an effective tool for exploring correlation between camera angle and
player locations. For long term sports analysis, we plan to use CameramanVis as a research prototype to investigate camera control,
and multi-camera planning.

1 INTRODUCTION

Sports data is pervasive in science, entertainment and business. Cam-
era angle is very important for capturing most interesting events in
sports. Camera planning aims for predicting where the camera should
look by understanding the environment. Algorithms for camera plan-
ning have been investigated for a variety of scenarios from scripted

• Jianhui Chen is with the University of British Columbia. E-mail:
jhchen14@cs.ubc.ca.

cooking shows and college lectures to team sports. It requires ma-
chine learning techniques to design features that describe the scene.
For example, the mimicking system [5] models camera planning as
supervised learning. It also requires computer vision techniques as the
learning examples are estimated from videos of human operators. Al-
though camera planning has been successfully applied to basketball
games [4], applying the similar technique to soccer games encounters
a number of challenges. For example, players are sparsely distributed
in larger areas so that the patterns of player locations are less repeat-
able than the patterns in basketball games.

This paper proposes CameramanVis to visualize the correlation be-
tween camera angles and player locations for soccer games. By visu-



Fig. 2. (a) Trajectory of the team centroid; (b) Gaussian mixture models
for the three phases of the game. The arrows show the direction and
magnitude of the velocity component of the flow vector. Figure from [10].

Fig. 3. Ball occupancy map over a half match for a team attacking left to
right. The frequency of ball occupancy is coded by color on the soccer
field. Figure from [3].

alizing the soccer data, we can have a better understanding of the data
so that we can improve the camera planning algorithm. Fig. 1 shows
the screen shot of CameramanVis. CameramanVis has three views:
global view, outlier view and query view. It supports data analysis for
computer vision researchers who work in automatic camera planning
for soccer games.

In the CameramanVis project, we mainly did followings:

• Design and implement CameramanVis using D3 and other web
techniques.

• Design a spatial soccer field feature visualization method which
is very intuitive to users.

• Conduct a preliminary user study and obtain positive user feed-
back.

In the next section, we will present related work. Then we will
introduce data and task abstraction, the proposed solution, and imple-
mentation details. Finally, we will present the result, discussion and
conclusion.

2 RELATED WORK

CameramanVis relates to both the visualization of sports and the visu-
alization of camera data.

2.1 Visualizing sports data
In sports analysis, player trajectory and occupancy map are widely
used for visualizing interesting objects such as players and balls. For
example, Fig. 2 (a) shows that lines are overlaid on the basketball court
to visualize the trajectory of players. Fig. 2 (b) shows that ellipses
visualize the the derived game phases such as offensive play, defensive
play, and time out. In Fig. 3, a heat map visualizes the ball occupancy
on a soccer field.

Shooting data visualization has been extensively studied. For exam-
ple, Goldsberry [7] proposed a more sophisticated heat map to quan-
tify the shooting range of basketball players. Pileggi and others [11]

Fig. 4. Radial heat map conveys information about shot length. The
darkest red ring represents the densest shot. Figure from [11].

Fig. 5. The camera trajectory in an 8 km route. Only the x, y positions of
the camera is visualized using blue line. The reference is from Google
map. Figure from [1].

introduced radial heat map shown in Fig. 4 to visualize the distance
of shots from the net. The radial heat map uses a series of concentric
rings surrounding the attacking goal representing cumulative bins of
shots.

Researcher have proposed visualization systems on soccer [9],
baseball [6], and tennis [12]. However, their work is not directly
related our work as ours is to analyze a specific sports broadcasting
problem instead of a sports visualization system.

2.2 Visualizing camera data

Cameras have two types of parameters: intrinsic and extrinsic param-
eters. Camera data visualization usually refers to the visualization of
extrinsic parameters which are the 3D position and orientation such as
Euler angles. Because camera parameters are measured relatively to
reference coordinates (such as world coordinates), a reference object
is necessary except a default coordinate is assumed.

When the number of camera goes up to hundreds, only the domi-
nantly varying parameters are visualized. For example, Fig. 5 shows
the trajectory of a camera mounted on a self-driving car. The car trav-
eled about 8 km in a city. The z position of the camera is assumed
constant because the variance of the height is much smaller than the
variance of x, y positions of the camera. Also, the orientation of the
camera is fixed with respect to the car. In this case, the dominating
varying parameters are x, y positions of the camera. As a result, a 2D
line overlaying on a geography map effectively visualizes the camera.
So, identifying and eliminating invariant camera parameters is very
important to effective visualize large number of cameras.



Fig. 6. Multiple camera views of field hockey game. Left: the view
frustums are visualized by different colors. Right: different teams are
represented by color circles. Figure from [2].

Fig. 7. Sketch of spatial soccer field feature. The feature has three
scales. In each scale, the soccer court is radially divided into 2, 4 and 8
cells. The number in each cell is the feature value.

2.3 Visualizing both sports and camera data
Visualizing both sports and camera has been used to illustrate data-
fusing from multiple camera in sports applications. Multiple cameras
are able to cover the whole playing ground with sufficient resolutions.
Fig. 6 left shows eight cameras looking at a field hockey game. The
projected view frustums of cameras are visualized by colored poly-
gons. Meanwhile, Fig. 6 right shows the players position in the play-
ing ground using circles with different colors.

A number of visualization methods in CameramanVis are inspired
by previous work. For example, the spatial soccer field feature visual-
ization method is inspired by Fig. 6 left.

3 DATA AND TASK ABSTRACTIONS

3.1 Dataset
The dataset is from my research project. It was collected from a semi-
professional soccer game. The original data size is 172, 800 frames (48
minutes). The data used in CameramanVis is uniformly down-sampled
from the original data to 1, 142 frames for speeding up the algorithm.
The data type is a table. Each item has the following attributes.

• Frame Number (sequential): a non-negative integer that repre-
sents time.

• Camera Angle (diverging) : camera pan angle. The range is in
[−56o,55o] with 0 in the middle. Negative angle means that the
camera looks at the left side of the soccer court.

• Player Location (spatial): player locations on the playing
ground. It is a set of 2D locations in the rang of 115×75 yards.

• Feature (quantitative): quantized player locations in one frame.
It is a 14 dimension multi-scale vector. It has 3 scales, and each
scale divides the soccer field into 2, 4, and 8 sub-regions, re-
spectively. The value in each dimension is the number of players
located in corresponding sub-regions. Fig. 7 shows the sketch of
the feature.

System CameramanVis
What:Data Table form. Each item has 3 main at-

tributes.
What:Derived Multi-scale spatial feature.
Why Browse, discover, identify and compare
How:Encode Line chart, color map, spatial color

map, bar chart, and error bar
How:Facet Overview + detailed views, linked-

highlighting
How:Reduce Filtering, aggregate
How:Manipulate Focus + context
Scale: About a half soccer match, sampled

frames is about 1,500 frames

Table 1. Analysis of cameramanVis solution idiom.

3.2 Users and Tasks
We designed CameramanVis with the goal of supporting computer vi-
sion researchers to explore soccer data in the length about one hour.
The typical users are graduate students, professors and research scien-
tists in camera planning and sports analysis areas.

CameramanVis must support researchers in browsing the whole
dataset, discovering correlation between the camera angle and player
locations. For example, CameramanVis shall help researchers to an-
swer questions such as:

• What is the angle distribution for a particular set of data?

• Are there repeatable patterns in the angle distribution?

• What is the player distribution for a particular range of camera
angles?

CameramanVis is also designed to identify outlier pairs and com-
pare these outliers.

Formally, CameramanVis mainly supports three tasks:

• Task one: identify and compare outliers
Input: a sequence of data and an angle threshold
Output: two frames that have the smallest feature distance but
their angle distance is larger than the threshold
Complexity: O(dN2) in which d is dimension of features and N
is the size of data

• Task two: identify camera angle patterns
Input: a reference feature and a distance threshold
Output: camera angle distribution of all data whose distances to
the reference feature is less than the threshold
Complexity: O(N)

• Task three: identify feature patterns
Input: a range of camera angle
Output: feature distribution
Complexity: O(N)

4 SOLUTION

The analysis of CameramanVis is summarized in Table 1. Camera-
manVis is intended to explore the correlation between the camera an-
gles and player locations. To support tasks in Sec. 3.2, the solution is
split into three views:

• Global View : For browsing whole data set, filtering data for
outlier detection and selecting a reference feature for identifying
angle patterns.

• Outlier View: For identifying and comparing outlier.

• Query View : For identifying angle and feature patterns.

4.1 Global view
Global view contains camera angle view and feature view.



Fig. 8. Global view. The left sub-view shows camera angles versus frame number, and the right sub-view shows features versus frame number. In
both views, users can use the brush to select a sub-sequence of data to explore the details.

Fig. 9. (a) The white and steel blue were used in the initial heat map,
(b) the light yellow and dark red are used in the final heat map. The
final heat map avoids color confusing between the heat map and the
background.

4.1.1 Camera angle view
Fig. 8 left shows the camera angle view. It follows overview first,
details on demand principle. It has two sub-views: the overview on
the bottom and the detailed view on the top. There is gray block brush
in the overview which is used to select the data for detailed view. The
brush support expanding, shrinking and shifting range selection. A
line chart visualizes camera angles.

4.1.2 Feature view
Fig. 8 right shows the feature view. The feature view shares most of
the design idiom with camera angle view except that it uses a heat map
to visualize the feature. The value of feature is coded using saturation
as the saturation channels are automatically interpreted as ordered by
our perceptual system.

Alternative heat map At first, I tried [white,steel blue] color
range as shown in Fig. 9 (a) for the heat map because the steel blue is

Fig. 10. Outlier view. This view shows side-by-side comparison of outlier
pairs. The dark red circles are player locations. From the multi-scale
soccer heat map, one can find the two frames are very similar in feature
space. However, the corresponding camera angles are very different:
the frame 1 is −30.1o, and the frame 2 is 25.3o.

consistent with the line chart in the camera angle view. However, the
white color is confusing as the background color is also white. After
trying several color ranges, [light yellow,dark red] is used in the final
implementation. This color range avoids the color confusing problem,
and the saturation clearly encodes the player count.

4.2 Outlier view

Outlier view supports the task one outlier detection. Fig.10 shows the
screen shot of the outlier view. It has three columns. The left column
has a combo box and a slider bar to set parameters. At the moment, we
do not have clear idea of which distance measurement is most suitable
for multi-scale features. We provide “Euclidean” and “Manhanttan”
distance selection so that users can decide which distance measure-
ment is better. The bottom of the left column uses simple text output
to show the frame number and angle of outliers.

The second and third columns are the main visualization part of the
outlier view. We use side-by-side comparison of small multiple views
to illustrate the difference between two frames. The views from top
to bottom are player location, scale one, scale two and scale three of
features. The feature is visualized by composing colors on the soccer



Fig. 11. The pyramid method using Matlab color map. The feature
values are coded by rainbow color. The locations of players are coded
by the orders from the left to the right. The scale of the feature is coded
by a pyramid shape.

Fig. 12. Query view. The top sub-view shows camera angle distribu-
tion using histogram and kernel density estimation (KDE). The bottom
sub-view shows feature distribution using the bar chart and the error
bar. The KDE line shows the angle distribution has a peak around −50o

and uniform distribution in other places. The error bar shows that the di-
mension 7 and dimension 14 are unstable because they have relatively
larger standard deviation.

field. The color is consistent with the color in feature view.
We have considered two methods to visualize the feature.

Spatial soccer field method Fig. 7 shows the sketch of our spa-
tial soccer field method for visualizing features. It illustrates how each
dimension maps to the spatial locations in the soccer field. Fig. 10
shows the visualization result for real data. Because this method com-
poses color information on the soccer field, we call this method as
spatial soccer field method.

Pyramid method Fig. 11 shows the pyramid feature visualiza-
tion method. The mimicking system [5] used this method to visualize
features in basketball games. We call this method as pyramid method
as it looks like a pyramid. The feature value is coded by a rainbow
color. The spatial locations of a group of squares are used to code the
feature location on the soccer field.

The spatial soccer field Method is more intuitive as player locations
are directly coded on the soccer field. It is also memorable to users.
However, we found the pyramid method is more compact than the
spatial soccer field method. We would like to use both of them in the
system in the future.

4.3 Query view
The query view has two sub-views: query angle view on the top and
query feature view on the bottom. Fig. 12 shows an example of query
view.

The query angle view shows the angle distribution after user se-
lect a reference feature in the feature view and a normalized feature

Fig. 13. Two angle distribution patterns. (a) One peak, (b) Two peaks. It
means the one-to-one supervised learning is not suitable for the whole
dataset.

distance threshold using a slider bar. We use “mouse click” instead
of “mouse over” in selecting the reference feature because we found
“mouse over” will be mistakenly triggered when users move mouse
from one view to another view. The histogram and line chart (KDE)
are superimposed to visualize the angle distribution of filtered data.
They are complementary. The histogram discretely represents the dis-
tribution of data so that it provides more details. On the other hand,
KDE represents the same data using a continuous line so that it clearly
shows the patterns in the data. For example, Fig. 13 shows two pat-
terns we found using CameramanVis: one-peak pattern and two-peak
pattern. The two-peak pattern illustrates that the data has one-to-many
mapping from the feature space to camera angle space. It reminds the
researchers that one-to-one mapping method such supervised regres-
sion is not adequate to model the complex soccer data.

In the query feature view, the data is filtered by an angle range slider
bar. The feature distribution is represented by mean value and standard
deviation for each dimension of features. Bar char and error bar visu-
alize the mean value and standard deviation, respectively.

4.4 Linked-Highlighting

There are two linked-highlighting between different views. The first
one is selecting a sequence of data int the camera angle view for outlier
detection. The second one is mouse clicking a feature in the feature
view as a reference feature for exploring angle distribution. There was
another linked high-lighting between the two brushes in the camera
angle view and the feature view. It was removed in the finalized ver-
sion as we found it irritated other operators.

5 IMPLEMENTATION

Libraries CameramanVis is implemented in JavaScript using D3,
d3 slider and jQuery libraries. We use Bootstrap to structure the UI
elements. We also use errorbar.js to draw error bars.

Data preparation The original data is from my research project.
We generate the data using Matlab for CSV files and C++ program for
JSON files.



Structure of code I implemented the following files:

• cameraManVis.html contains the html code for three views. It is
adapted from VibBiz [14].

• cmv data.js handles all data-related scripts such as loading and
pre-computing the distance table.

• cmv global.js contains global view scripts.

• cmv outlier.js contains outlier view scripts. Specifically,
draw space feature function draws spatial soccer field feature.

• cmv query.js contains query view scripts.

• cmv main.css contains most of CSS code.

These files are the major parts of whole visualization components.

How to draw spatial soccer filed feature using D3

• Draw a soccer field using circle and rectangles in a SVG. The
size of the SVG is the same as the size of the soccer field.

• Draw arcs using D3. The center of the arc is along the center line
of the soccer field. The start angle and end angle is determined
by the dimension of the feature.

• Fill the arc area with mapped color from feature values, and the
arc areas outside of the SVG will be automatically clipped as D3
only draw arc inside of the SVG.

6 RESULTS

Scenario of Use John is a computer vision graduate student
working on a robotic camera planning project. He wants to analyze
how human operators control the camera to improve his automatic sys-
tem.

First, John opens the CameramanVis with pre-loaded data. The
system gives him the global view in Fig. 8. He browses and compares
camera angles and features in the side-by-side views. He feels like
the correlation between the two views is reasonable in general. He
thinks it might be helpful to only look a short sequence of the data. He
selects a short sequence in the camera angle view using the brush at
the bottom. The main camera angle view immediately shows detailed
pan angles. He also browses the feature in the same way and feels that
the data so far is reasonable.

Then, John moves to the outlier view to check whether there are
outlier pairs in the data. When he adjusts the angle threshold using a
slider, the outlier pair is immediately identified (Fig. 10). By look-
ing at the side-by-side small-multiples and the camera angles, John
instantly finds that the outliers are somehow beyond his expectation.
The player locations and features show that the two frames are very
similar in feature space, however, the angular difference is more than
50o. Why does it happen? He switches the feature distance type from
the “Euclidean” distance to the “Manhattan” distance using a combo
box selection. The outlier view shows similar result. He makes a
record of the frame numbers for further study.

Next, he moves to query view to identify patterns of the pan angles
and the features distribution. He wants to know the variance of the
human operators given similar features. So, he selects one feature from
the feature view using mouse click and adjusts the feature distance
threshold. The camera angle distribution is immediately shown in the
query view (Fig. 12 top). He identifies the distribution has a peak
around −50o and has uniform distribution in other places. He thinks it
is because the feature distance threshold is too large. So he decreases
the threshold value from 0.5 to 0.2, then the peak value appears around
0o. He thinks the 0o is a reasonable value as the players are around the
center of the soccer field.

Finally, John adjusts the camera angle range using a range slier bar
(Fig. 12 bottom). He moves the slider bar to the most left side and the
most right side. The chart bar shows the mean and standard deviation
of feature in each dimension. The two feature distributions have oppo-
site patterns as shown in Fig. 14. It confirms his expectation that the
camera angle follows the player positions in general.

Fig. 14. Feature distribution. (a) When the camera looks at the most left
of the soccer field, (b) When the camera looks at the most right of the
soccer field. The bar chart shows the features has opposite patterns.
The patterns confirm the fact that the camera angle follows the player
positions in general.

John has a clear idea of the new collected data after further explor-
ing camera angle distribution using different features.

Informal User Feedback I showed the intermediate version of
CameramanVis to one of my fellow graduate students whose major is
robotics. First, I briefly introduced the purpose of the system, the three
views, and how to use the brush and slider bars. Then, she used the
system for several minutes. Next, I asked her suggestions for the sys-
tem. She said she likes the system in general. Then she gave following
suggestions:

1. The outlier comparison should be column-by-column, but row-
by-row.

2. Add legend in angle distribution and feature distribution other-
wise users can not understand the histogram and bar chart.

I accept the suggestion 1, and the current version uses column-by-
column comparison. I have considered the suggestion 2 but did not
implement the suggestion in the current version as I think too much
visual information in small areas is not a good idea.

I also showed the current version of CameramanVis to my super-
visor who is a senior computer vision professor. He knows details of
my research project. As we had limited conversation time, I explained
the system using a recorded video. During my demon, he said he likes
the side-by-side outlier comparison. He also immediately pointed out
that the dimension 14 in the feature is unstable because the standard
deviation is relatively larger than the mean value. I explained that it
may be caused by the uneven distribution of player locations on the
soccer field. After the demonstration, he supports my idea to send a
refined version of CameramanVis to our partners.

Although the user study is taken with two persons informally, we
believe CameramanVis is a promising system to explore the complex
correlation between the camera angle and player locations.

7 DISCUSSION

Overall, we believe CameramanVis is an excellent beginning of visu-
alizing soccer data for camera planning. The system achieves many of
its goals.



Our informal user feedback suggests that researchers intend to use
CameramanVis. As the users are professional in the research area, they
can immediately make decisions by comparing the visualized pattern
and the pattern what they think should be.

Due to lack of time, CameramanVis has some limitations.

Limitations First, the system does not scale well to densely sam-
pled data. The system is slow when sampled data number is large than
1,500. The negative effect sparsely-sampled data is that the line char
is not smooth as shown in Fig. 8 left. One of the bottle neck of speed
is the “brush” in D3, and data filter computation.

Second, some features are not fully implemented in CameramanVis.
For example, the camera angle output is the text. It is better to visualize
the camera angle using colored areas as in Fig. 6. Also, the reference
feature is not highlighted after mouse clicking in the task two. Users
can not remember which feature is used as a reference feature. And
there are several unsolved bugs in the current system. For example,
the histogram in the angle query view is occasionally incorrect when
the feature distance threshold is smaller than a particular value.

Third, the current system only has the front end of the web applica-
tion. It only runs on a local machine, which restricts its deployment.

Fourth, the user study is preliminary. To make the system more
useful to other researchers, more user feedback is necessary.

Lessons Learned This project has been a valuable learning ex-
perience. We learned more than what we expected at the beginning of
the project.

First, discussion is important. A number of major features of Cam-
eramanVis, such as spatial soccer feature, multiple distance measure-
ment, and linked-highlighting are finalized after discussion with the
course lecturer and fellow students.

Second, dividing the whole system to sub-systems makes imple-
mentation faster. This project gives my first web programming ex-
perience. To make the project work properly, we divide the system
into 5 sub-systems and implement them separately. The standalone
D3 examples in the Internet provide very useful prototype for our sub-
systems.

Third, applying the system to large data is more difficult than we
expected. Because optimizing the speed not only takes time, but also
requires deep understanding of web programming, we have to give up
the original idea of densely sampling the original data. The desired
sampling step is 30, but the current sampling step is 150.

8 CONCLUSION AND FUTURE WORK

We presented CameramanVis, a useful visualization system that sup-
port browsing and identifying outliers, patterns from broadcasting soc-
cer data for researchers. We employed linked-highlighting to coordi-
nate multiple views in the system. We met the challenging goal of
using CameramanVis for large densely sampled time series data. We
conducted an informal user study, and users are enthusiastic about the
system.

CameramanVis is our first step on visualizing the sports data for the
purpose of algorithm design. In the future, we would like to combine
CameramanVis with machine learning visualization methods such as
[13, 8] to bridge the gap between data visualization and algorithm de-
sign.

REFERENCES

[1] H. Badino, D. Huber, and T. Kanade. Real-time topometric localization.
In Robotics and Automation (ICRA), IEEE International Conf., pages
1635–1642, 2012.

[2] A. Bialkowski, P. Lucey, P. Carr, S. Sridharan, and I. Matthews. Repre-
senting team behaviours from noisy data using player role. In Computer
Vision in Sports, pages 247–269. 2014.

[3] A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, and I. Matthews.
Identifying team style in soccer using formations learned from spatiotem-
poral tracking data. In Data Mining Workshop (ICDMW), IEEE Interna-
tional Conf., pages 9–14, 2014.

[4] I. Chant. Robotic cameras learn to follow
basketball. http://spectrum.ieee.org/
tech-talk/robotics/robotics-hardware/

robot-cameras-taping-basketball, 2015. [Online; ac-
cessed 16-Dec-2015].

[5] J. Chen and P. Carr. Mimicking human camera operators. In Applications
of Computer Vision (WACV), IEEE Winter Conf., pages 215–222, 2015.

[6] C. Dietrich, D. Koop, H. T. Vo, and C. T. Silva. Baseball4d: A tool for
baseball game reconstruction & visualization. In Visual Analytics Science
and Technology (VAST), IEEE Conf., pages 23–32, 2014.

[7] K. Goldsberry. Courtvision: New visual and spatial analytics for the nba.
In MIT Sloan Sports Analytics Conf., 2012.

[8] K. Lau. Random forest ensemble visualization. http://kenlau177.
github.io/Indented-Agg-Tree/, 2014. [Online; accessed 16-
Dec-2015].

[9] C. Perin, R. Vuillemot, and J.-D. Fekete. Soccerstories: A kick-off for vi-
sual soccer analysis. Visualization and Computer Graphics, IEEE Trans.,
19(12):2506–2515, 2013.

[10] M. Perše, M. Kristan, S. Kovačič, G. Vučkovič, and J. Perš. A trajectory-
based analysis of coordinated team activity in a basketball game. Com-
puter Vision and Image Understanding, 113(5):612–621, 2009.

[11] H. Pileggi, C. D. Stolper, J. M. Boyle, and J. T. Stasko. Snapshot: Vi-
sualization to propel ice hockey analytics. Visualization and Computer
Graphics, IEEE Trans., 18(12):2819–2828, 2012.

[12] T. Polk, J. Yang, Y. Hu, and Y. Zhao. Tennivis: Visualization for ten-
nis match analysis. Visualization and Computer Graphics, IEEE Trans.,
20(12):2339–2348, 2014.

[13] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In ECCV, pages 818–833. 2014.

[14] K. Zhang and S. Hasti. Vibviz. http://www.cs.ubc.ca/

˜kzhang2/VibViz/, 2014. [Online; accessed 16-Dec-2015].

http://spectrum.ieee.org/tech-talk/robotics/robotics-hardware/robot-cameras-taping-basketball
http://spectrum.ieee.org/tech-talk/robotics/robotics-hardware/robot-cameras-taping-basketball
http://spectrum.ieee.org/tech-talk/robotics/robotics-hardware/robot-cameras-taping-basketball
http://kenlau177.github.io/Indented-Agg-Tree/
http://kenlau177.github.io/Indented-Agg-Tree/
http://www.cs.ubc.ca/~kzhang2/VibViz/
http://www.cs.ubc.ca/~kzhang2/VibViz/

	Introduction
	Related Work
	Visualizing sports data
	Visualizing camera data
	Visualizing both sports and camera data

	Data and Task Abstractions
	Dataset
	Users and Tasks

	Solution
	Global view
	Camera angle view
	Feature view

	Outlier view
	Query view
	Linked-Highlighting

	Implementation
	Results
	Discussion 
	Conclusion and Future Work

