
GameNetViz Final Report

Neil Newman∗ Jason Hartford†

December 19, 2015

Abstract

In complex machine learning models, it is often time-consuming and difficult for
practitioners to see the intermediate computational sets that lead to the model’s
solution. We present GameNetViz as system for visualising the intermediate
computation sets in a complex behavioural game theory model. It leverages off
a particularly useful property of the domain: the model repeatedly transforms
small matrices and small vectors; while the model itself is highly parameterized
and complicated, the intermediate outputs are low dimensional and simple.
This allows direct visual encoding that is effective at showing all intermediate
transformations in a single overview view, with further details available via
tool-tips and linked-highlighting.

1 Introduction

Behavioural game theory aims to predict the behaviour of people as they interact
strategically. Researchers in the field typically have two goals: explaining how
observed behaviour deviates from perfect rational behaviour, and maximising
predictive accuracy.

With both of these goals in mind, we turn to modelling human strategic
behaviour through Deep Learning. The recent success of Deep Learning in
prediction tasks [4] such as image recognition [3] and natural language processing
[11] has shown that for many problems, one can maximise a model’s predictive
accuracy by optimising flexible models composed of multiple processing layers
to observed data. In certain domains, such as vision, the early layers of the
model correspond to features that can be readily understood. However, adding
flexibility to a model makes it both more difficult to optimise and more difficult
to interpret, which slows research progress as it becomes difficult to detect
modeling failures.

Through this project, we show that careful use of visualisation provides a
useful tool to “see under the hood” of a complex model to see the mechanisms

∗newmanne@cs.ubc.ca
†jasonhar@cs.ubc.ca

1



with which it is achieving its performance and develop hypotheses as to the
causes of poor performance.

Our solution is GameNetViz, a tool that interacts directly with the be-
havioural model in order visualise the intermediate steps of computation. By
exploiting the model’s relative low-dimensionality, we are able to display a full
overview of these steps on a per-data point basis that makes it easy to explore
data points on which the model was more or less successful.

We proceed as follows: Section 2 surveys other attempts to visualise com-
plex models in the literature, Section 3 describes the data and tasks, Section 4
presents our visualisation solution, Section 5 describes a typical interaction with
the tool, Section 6 describes the tools we used to implement the visualisation,
Section 7 discusses the strengths and limitations of the approach and Section 8
concludes.

2 Related Work

2.1 Model Visualisation

The closest prior work that we are aware of is [7], which develops an interac-
tive system for validation of relatively complex regression models that allows
researchers to understand the model’s behaviour under different optimisation
regimes. They demonstrate the usefulness of allowing engineers to visualise
slices of the target function in order to get a feeling for the model’s behaviour
around a particular point in space.

The deep learning literature has also attempted to visualise components of
their models in order to better understand how they work. In [8], the authors
build functions that simulate the loss surfaces of challenging non-convex optimi-
sation problems. To support this work, they use random projections to visualise
slices of their target function.

In [5], the authors present a framework for interactively building regression
models. Their system is centered around two small multiples overviews that
show both single and pairwise relationships between features and the regres-
sion target value, ranked by a variety of relevance metrics. This approach is
particularly effective for regression models because users can see the difference
between the target and predicted value for each data point on each feature axis.
Unfortunately, in our context, the model outputs a probability distribution and
hence can’t be directly represented by a single target value. Because regression
models can be fit quickly, their system also allows interactive changes to the
regression model. They use linked 3d views effectively for validation of their
model.

[12] is a tool to systematically explore a multi-dimensional parameter space
that affects the quality of image segmentation algorithms. Unlike regular pair-
wise small-multiples which typically only show the lower triangle of the pairwise
matrix, Tuner uses both triangles in order to display two different optimisation

2



objectives simultaneously.
[9] describes visual parameter space analysis: systems where the inputs con-

tain parameters that can be tuned that will affect the quality of the output. The
paper distinguishes between different types of input: control parameters, which
are tuned, and environmental parameters which come from measured data. The
paper also codifies analysis tasks: using this paper’s terminology, we have an
optimization task, since we are interested in finding the best parameters given
a loss function, as well as a sensitivity task, since we are interested in studying
the impact on outputs of varying the model’s input parameters. However, un-
like this paper, our we cannot view the model as a black box, since we want to
understand what it is that the black box is doing.

In contrast, [13] provides a viz tool with the goal of understanding the rela-
tive importance of input and hidden units in neural networks. The importance
of a weight (a metric derived from propagating the weight throughout the net-
work) is encoded in the width of the connection, and the importance of an input
unit is encoded by its size. The authors were able to use these visualizations to
identify what the important features were in a spam classifier, and to remove
unimportant nodes from the hidden layers (leading to a more compact network
with similar accuracy). However, the examples in the paper only have a single
hidden layer, and it is unclear how these techniques would generalize to networks
with multiple hidden layers.

2.2 Feature discovery

[14] visualises the layers in a convolutional network that is used for image classi-
fication, using a derived data technique that allows them to infer the input pixels
that resulted in particular outputs in intermediate layers in the network. Unfor-
tunately, this technique relies on the visual structure encoded in the parameters
of the convolutional network for be useful, and thus doesn’t generalise to our
domain. This limitation motivates our interest in comparing learnt features to
hand

3 Data and Task Abstractions

3.1 Data Abstraction

There are two sources of data that we have to consider in this project: the
raw data describing the games and observed behaviour, and the parameters of a
machine learning model which attempts to predict behaviour given a description
of a game.

A game is described by a payoff matrix : n×m tables where n is the number of
decisions available to the first player and m is the number of decisions available
to a second player. Each (i, j) cell in the table contains a tuple of integer values
that describes the payoff that each player will get if the first player chooses action
i and the second player chooses action j. The raw data comes from behavioural

3



economics studies involving real subjects playing a variety of one-shot games
with each other. One-shot means that the games entirely consist of each user
making a single decision from a given set of decisions, without observing any
previous play from their opponent.

There are 128 unique payoff matrices in the dataset, and 12, 071 observations
of players playing these games (consisting of the choices that the players made).
Therefore, there are 128 distributions over the actions for each player. Payoff
matrices in the dataset range in size from 2×2 to 5×5, with the majority being
3× 3 games.

The machine learning model can be viewed as a composition of functions
that map the payoff matrices to a vector of probability distributions describing
the predicted frequency with which a player will select a particular action. The
function composition can be described by a tree where the root nodes are the
function inputs, each internal node indicates the application of a function to its
parent’s output, and the functions are parametrised by the weights of the in-
edges. Domain experts are primarily interested in the parameters of the function
(the edges in the graph), and the intermediate function outputs. Of particular
importance is the notion of learnt features which are intermediate predictions
of probabilities that players select actions that the model uses to make its final
prediction.

A full summary of the domain specific terms is given in Table 1.

3.2 Task Abstraction

We aim to solve two related tasks using this visualisation:

• Show practitioners how the model constructs its output from intermediate
computation steps.

• Compare the model’s predictions on individual data points to what actu-
ally occurred in experiments.

We describe each task in turn.

3.2.1 Computation Steps

The GameNet model takes a matrix of payoffs as inputs and performs a number
of steps of computation to produce its output. Each of these computational
steps can be thought of as transformations of either the input payoff matrix or
an earlier transformation’s output.

Each transformation occurs in a unit and the units fall into four distinct
classes, each requiring different visual encoding.

• Hidden units are matrix to matrix transformations. They output matri-
ces formed through a weighted sum of either the payoff matrix or previous
hidden units followed by a non-linearity. These are the most challenging
objects to visualise because the magnitude of their outputs are uncon-
strained and each output may contain up to 5× 5 values.

4



Domain Mathematical
Abstraction

Visual Abstraction

The object of interest is
the model which outputs
a probability distribution
over actions for the second
player in each game in the
dataset.

The model is a function
Fθ : Rn×m ∪ Rn×m → Sn
that maps a game defined
by a payoff matrix to the
probability simplex. The
function is parametrised
by a set of parameters θ.
The model F = f1 ◦
f2 ◦ . . . fl is a compo-
sition of multiple func-
tions fi which is best visu-
alised as a network where
nodes represent functions
and edges show the map-
ping between functions.

The model takes a multi-
dimensional table of num-
bers which are repeatedly
transformed by the func-
tions f1, . . . , fn in propor-
tion to the parameters.
We visualise this as a se-
ries of intermediate states.

A game is a strategic in-
teraction between one or
more players who may
each choose from a set of
actions. This project fo-
cuses on a model that ap-
plies to two-player games
where each player has be-
tween 2 and 5 actions

Formally, a normal-form
game is a tuple (N,A, u)
where N is a set of play-
ers, A is the set of actions
available to each player
and ui : A→ ui is a map-
ping from actions to pay-
offs. For our purposes it
suffices to think of a game
as being an object defined
by a payoff matrix.

A game is represented as
a payoff matrix which is a
multidimensional table in-
dexed by a pair of actions,
where the value is a tuple
of numbers corresponding
to the payoffs

Feature is a distribution
over the actions available
to a player indicating the
probability that the player
may choose that action.

Each feature fi is a vector
in Sn, the n-dimensional
simplex, where n is the
number of actions avail-
able to the player.

A vector of positive real
numbers that sum to 1.

Table 1: Summary of Domain-Specific Terms

• Feature units are matrix to vector transformations where the vectors all
sum to one, and each element of the vector corresponds to the probability
the feature assigns to a particular action.

• Action Response units are vector to vector transformations that are ar-
ranged in levels and by player. An Action Response layer for a particular
player at level k adds a weighted sum of the feature vectors to a weighted
sum of the opposite player’s Action Response k − 1 preceding unit’s out-
puts before applying a non-linear transformation that outputs a vector

5



that sum to one.

• Output units are vector to vector transformations which are composed of
the weighted sum of player 1’s Action Response units. The output vector
sums to one.

3.2.2 Performance Comparison

For each game in the data set we have a model prediction and the result of
what occurred in the experiment. A typical task for practitioners is to compare
the performance in the model to what actually occurred in order attempt to
understand whether there is anything systematic in the games on which the
model is performing poorly which may suggest deficiencies in the model.

To support this, the visualisation needs to provide a mechanism for compar-
ing predicted to actual performance, and a way of evaluating the characteristics
of a game.

4 Solution

This section will describe GameNetViz. The overall system can be seen in Figure
1. A major feature of our design is that computation flows from left to right in
the visualization. We begin with the inputs to the model, which are the payoff
matrices on the far left, and these are followed by the hidden layers, feature
layers, action response layers, and finally end with the the output layer on the
far right. Our visualization directly mirrors the layout of the model’s internals,
and as a result, any inputs to a computational unit are always to its left.

4.1 Payoff Matrix

The input to the model is a payoff matrix. We encode the input in two ways
which the user can switch between at any time that we refer to as Number and
Blob views. Our two designs are shown in Figure 2. The Number view is the
traditional game theory representation of the payoff matrix: each cell lists the
payoff for each player if the corresponding actions are chosen. The weakness
of this view is that the user may have to read m × n × 2 numbers in order to
understand the game. Therefore, we also provide the Blob view: in this view,
each cell contains two shaded circles whose areas are proportional to the payoff
that the user will receive. This view provides several advantages: Firstly, it is
very easy to see when the payoffs for each player are about the same or wildly
different: if a cell contains payoffs of very different sizes for each player, it will
be immediately obvious from this view. Secondly, it is very easy to spot zero
payoffs, as no circle is drawn for a player with a zero payoff. The payoffs are
normalized relative to the highest payoff value in the matrix, so that the largest
value in a game will always take up the same amount of area. It would have
been possible to normalize against the largest overall payoff in any of the games,
but the relative scales of games in the dataset is very different (some games have

6



Figure 1: The full GameNetViz interface

all small payoffs, some games have all large payoffs, some games have both) and
this type of normalization would have made this view useless for games where
all of the payoffs are small. While the Blob view is great for a quick summary,
it is almost impossible to distinguish between a payoff of 300 a payoff of 301,
and it therefore it cannot replace the Number view (for a game where the only
2 possible payoffs are 300 and 301, this could matter).

4.2 Hidden Layers

The payoff matrix undergoes a series of transformations through the hidden
layers. There are a number of hidden layers (the number is a choice of the
model) and each layer is composed of a number of hidden units (also a choice of
the model). Each hidden unit outputs a matrix with the same dimensions as the
payoff matrix, with the important distinction that this matrix is single valued
(instead of a pair of numbers). We encode these outputs in our visualization,
which can be seen in 3. For each hidden unit, we draw a grid of the same
dimensions of the output matrix. In each grid cell, we shade an area proportional
to the magnitude of the output. The colour of the shaded area is green if the
value is positive, and red if the value is negative. Normalization is performed
relative to the largest value in any hidden unit for the particular game being
displayed.

7



Figure 2: The Payoff matrices showing the traditional numeric representation
(left) and the blob view (right)

Figure 3: The hidden layers. Shaded block area represents the magnitude of
the number in the cell in the matrix. Positive numbers are shown in green and
negative numbers in red.

8



4.3 Features

The feature layer of the model is composed of the final hidden layer. The
number of features for each player is specified by the model. Each feature
outputs a probability distribution over a player’s actions. We encode these
distributions as stacked bar charts: one for each feature, piled on top of one
another as shown in Figure 4. The order of the actions in each of the stacked
bar charts is constant. The user can see an overview of what the features as a
whole are predicting by by examining the relative amounts of area devoted to
each colour in the piled up figure. To make comparisons across features, the user
can interact with the stacked bar charts by clicking on them. The stacked bar
charts will separate into grouped bar charts (where the grouping is by action),
making cross feature comparisons for a particular action easy. The stacked bar
charts expand to the right, and the rest of the visualization flies off screen to the
right to make room for the group bar charts; this animation ensures the user
does not get lost. Clicking on the grouped bar charts reverts the visualization
to its former state.

Figure 4: Each feature outputs a different probability distribution of playing
each action represented as stacked bar charts. Clicking on the stacked bar
charts splits them into grouped bar charts, so that you can compare an action’s
distribution across different features.

4.4 Action Response Layers

The action response layers, similarly to the feature layers, output probability
distributions over actions. Unlike the feature layers, action response layers are
composed of previous action response layers. Therefore, in order to maintain our
left to right metaphor of computation, we needed to draw each action response
layer’s stacked bar chart vertically in order for the entire visualization to be
viewable on screen at once (see Figure 5). When the user hovers over an action
response layer, a tooltip pop up (see Figure 6). An action response player is
composed of contributions from the feature layers, as well as from previous
action response layers. These contributions are summed up and passed through
a non-linearity. The tooltip shows the relative contribution from the feature
layers and the action response layers, as well as their sum. The tooltip is to the

9



left of the action response layer, so that the output (the sum passed through the
non-linearity) can also be seen. The non-linearity is controlled by a sharpness
parameter (unique to each action response layer), which is also displayed at the
bottom of the tooltip. Above the action response layers, we include a bar chart
representing the level distribution. The output is composed of a weighted sum
of each of the action response layers, and the weights are given by this level
distribution.

Figure 5: The Action Response layers output probability distributions over
actions represented as stacked bar charts. Above the AR layers we show the
level distribution indicating the layer’s contribution to the final output

4.5 Output

The final prediction of the model is a probability distribution over the actions
for the second player. This probability distribution is juxtaposed with the actual
observed distribution of play from experiments, as shown in Figure 7. Again,
we used the stacked bar chart encoding.

4.6 Hover

In order to determine what parts of the model influence a particular computa-
tional unit, a user can hover over a unit which will cause edges to be rendered
from that unit to all of its inputs. An example of this hover action can be seen
in Figure 8.

10



Figure 6: Hovering over an AR unit produces a tool-tip showing a breakdown of
how it is composed, before the non-linearity is applied. The sharpness parameter
of the non-linearity function for that AR layer is also displayed

Figure 7: The output compares the actual output to the predicted output

11



Figure 8: Edges give a quick visual indication of the preceding nodes on which
the unit depends

4.7 Game Selection

The model’s predictions are all on a per-game basis. The user can change the
game that is being displayed by selecting from a dropdown menu located at the
top left of the screen as show in in Figure 9. A new selection causes the entire
display to be redrawn. There are two sorting methods for the games: by game
size (e.g. by games with 4 actions for player 2 and 2 actions for player 1) or
by a derived metric of the model’s performance, allowing the user to easily see
where the model is doing poorly.

4.8 Hand Crafted Features

As mentioned previously, there are several known features that are good indi-
cators of how people will interact. For example, the max max payoff feature
corresponds to the maximum possible achievable payoff for a given player. Be-
low each payoff matrix, we list five of these features in greyed out text. If
the user hovers over one of these feature labels, the feature text becomes more
prominent and the rows in the matrix corresponding to the actions associated
with that feature on that game are highlighted, as can be seen in Figure 10.
There are some limitations to our current approach: we only show the features
for the first player, though it would also be interesting to highlight columns
showing the features for the second player. We also highlight entire rows, when
it would be preferable to also highlight the individual outcomes that are trig-
gering the feature. For example, the outcome that provides the max max payoff

12



Figure 9: Choosing a game from the selector will render data for that game.
Games can be ordered by size, or by a derived difference between the model’s
prediction and observed play

may only be achievable if the other player selects a particular action, and we
should highlight this fact. These improvements were not made purely due to
time constraints.

5 Scenario of use

The user has trained his model and is now interested in understanding where it
performs well and where it performs poorly. He loads the model into GameNetViz
and selects a game from his data set using the game selector (Figure 9).

He begins by comparing the actual to predicted output. At a glance he can
see how similar the two are from the grouped bar chart.

For games on which the model is performing well, he may be interested in
which components of the model lead to its performance. By examining the level
distribution above the AR layers (Figure 5) two observations are immediately
obvious. AR3 is not contributing at all to the solution and much of the perfor-
mance is derived from AR0. By hovering over individual AR layers a tool tip
pops up to show the contribution of Features and AR layers to the AR-layer’s
performance (see Figure 6).

Similarly, he examines the output of the feature units by looking at their
stacked bar charts (Figure 4). For a better comparison between the probabilities
assigned to each action, clicking on the charts to expand them to grouped bar
charts.

By selecting a poor performing game from the game selector he can develop

13



Figure 10: Hovering over a known hand-crafted feature, the row(s) correspond-
ing to that feature light up. Non-hovered features are grayed out, to avoid
distraction

14



Figure 11: The visualization is flexible to changes in model parameters such as
number of hidden layers or the size of each layer

15



hypotheses on what may be going wrong in his model. For example if a particu-
lar action is under-weighted, looking at which of the known features (Figure 10)
perform suggest that action, may suggest that the feature is not being learnt
by the model. This hypothesis could be strengthened by examining multiple
games on which the model performs poorly to see whether or not the pattern is
consistent.

6 Implementation

There are two components to our implementation: a Python-based API that
handles the data and interactions with the model, and our front-end which is
built using D3 [1].

The Python API runs an implementation of the model and has access to all
the data which allows it to deliver the model input and output data as well as
any intermediate computation output that we need to visualise. This is then
served to D3 via Bottle [2], a simple Python web framework. It communicates
the internals of the model to the visualization in JSON that is parsed on the
client side. The visualization is therefore also protected against changes that
the practitioner may make to the model: such as changing the number of hidden
layers or action response layers.

The majority of our solution was built from scratch using standard D3 com-
ponents. The only exceptions to this D3 Grid [10] which was used to draw the
grid in the payoff matrices and hidden layers, and D3 Tip [6] which was used to
build the tool-tip for the hover action on the action response layers.

7 Discussion and Future Work

The major strength of GameNetVis is in providing an “at a glance” view of the
outputs of nodes within the model on a particular game. Perfectly symmetric
games with trivial outputs are easy to spot and oddities such as unusual feature
output or hidden units that output zero values are equally clear with minimal
effort on the part of the user.

Where it is less successful is in visualising the parameters of the network and
showing weighted sums. The only parameters of the network that we explicitly
show are those that make up the level distribution. While these are the most
important parameters and easiest to interpret, there are a significant number
of other parameters that we would have liked to show given the time to find an
appropriate encoding.

We also would have liked to find an effective way of showing weighted sums.
From a visualisation perspective, the model has an interesting property where
there are multiple places in which you have multiple vectors that sum to one
that are all added to make a new vector that sums to one.

Figure 12 shows an idea we had for representing the weighted sums that we
ultimately decided was interesting but not practically useful for solving the tasks

16



presented. Further work could potentially find representations that exploit this
property in a more useful fashion.

Figure 12: An idea for a glyph that shows the weighted contribution of outputs,
where the weights sum to one. Here, each stack bar chart’s height is proportional
to the feature’s associated weighting in the weighted sum.

Another idea that we experimented with and believe to be useful, but ul-
timately chose to leave out of this version of the visualisation was to build a
method of exploring the model’s output around a particular parameter setting.
The model has approximately 150 parameters that define a function in a 150
dimensional space which clearly cannot be visualised. However, we had hoped
to visualise the effect of changing each of the parameters independently while
holding the others fixed. Figure 13 shows examples of these plots, which, given
more time would have been a useful addition to the solution (albeit while solving
a different problem to the ones described). Another similar idea was to show
contour plots of multiple features against one another.

We also noticed that the blob payoff matrix encoding is invariant to scaling,
so two scaled games look the same. This is unsatisfying given that we know
humans have both a non-linear response to payoffs and a non-linear response to
a particular visual encoding. A more principled visual mapping would attempt
to find a visual encoding that is the closest match to the non-linearity in human
response to payment such that one could get a feel for the size of a payment
from the encoding of the payoff matrix directly.

Probably the weakest part of our project were the hidden layers. While
better than nothing, they offer very little insight into what transformations to
the data were leading to their outputs. A helpful simple improvement would to
have a fish-eye (or similar) effect when hovering over a hidden unit to at least
allow more detailed inspection of the size of the rectangles in the matrix. That
said, it is not clear that the shaded matrix is the right visual encoding, or for
that matter whether the outputs of the hidden layers provide insight into their
function. An alternative approach would be to attempt to visualise parameters
of the hidden layer rather than outputs, though it is unclear whether this would

17



Figure 13: An earlier attempt at plotting marginals of parameters

be more helpful.
Finally, this implementation does not scale to large games. There exist

games of 100 or more actions that would be useful to visualise. In order to
do so it would be necessary to take advantage of the structure present in the
description of the game rather than naively plotting 100 × 100 matrices. This
is possible because these large games tend to have some structure encoded in
them so that they may be described to humans in an understandable fashion.
Finding a way to exploit this would be necessary for effective visualisation.

8 Conclusions

We have presented GameNetViz, a visualization for the GameNet model of
normal form games. Our visualization lets the user observe the outputs at each
computational unit, thereby allowing users to see how the output of a complex
model was constructed. We hope that our tool will be useful for uncovering new
insights as to what the model is doing and where it can be improved.

References

[1] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. Visualization and Computer Graphics, IEEE Transactions on,

18



17(12):2301–2309, 2011.

[2] Marcel Hellkamp. Bottle: Python web framework. http://bottlepy.org/
docs/dev/index.html, 2015.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, 2012.

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 05 2015.

[5] T. Muhlbacher and H. Piringer. A partition-based framework for building
and validating regression models. Visualization and Computer Graphics,
IEEE Transactions on, 19(12):1962–1971, Dec 2013.

[6] Justin Palmer. D3 tip. https://github.com/Caged/d3-tip, 2013.

[7] Harald Piringer, Wolfgang Berger, and Jürgen Krasser. Hypermoval: In-
teractive visual validation of regression models for real-time simulation.
In Computer Graphics Forum, volume 29, pages 983–992. Wiley Online
Library, 2010.

[8] Tom Schaul, Ioannis Antonoglou, and David Silver. Unit tests for stochastic
optimization. CoRR, abs/1312.6055, 2013.

[9] Michael Sedlmair, Christoph Heinzl, Stefan Bruckner, Harald Piringer,
and Torsten Moller. Visual parameter space analysis: A conceptual
framework. Visualization and Computer Graphics, IEEE Transactions on,
20(12):2161–2170, 2014.

[10] Jeremy Stucki. D3 grid. https://github.com/interactivethings/

d3-grid, 2013.

[11] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learn-
ing with neural networks. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112,
2014.

[12] T. Torsney-Weir, A. Saad, T. Moller, H.-C. Hege, B. Weber, J. Verbavatz,
and S. Bergner. Tuner: Principled parameter finding for image segmenta-
tion algorithms using visual response surface exploration. Visualization and
Computer Graphics, IEEE Transactions on, 17(12):1892–1901, Dec 2011.

[13] Fan-Yin Tzeng and Kwan-Liu Ma. Opening the black box-data driven
visualization of neural networks. In Visualization, 2005. VIS 05. IEEE,
pages 383–390. IEEE, 2005.

19

http://bottlepy.org/docs/dev/index.html
http://bottlepy.org/docs/dev/index.html
https://github.com/Caged/d3-tip
https://github.com/interactivethings/d3-grid
https://github.com/interactivethings/d3-grid


[14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding con-
volutional networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and
Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, volume 8689 of
Lecture Notes in Computer Science, pages 818–833. Springer International
Publishing, 2014.

20


	Introduction
	Related Work
	Model Visualisation
	Feature discovery

	Data and Task Abstractions
	Data Abstraction
	Task Abstraction
	Computation Steps
	Performance Comparison


	Solution
	Payoff Matrix
	Hidden Layers
	Features
	Action Response Layers
	Output
	Hover
	Game Selection
	Hand Crafted Features

	Scenario of use
	Implementation
	Discussion and Future Work
	Conclusions

