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What?

Behavioural Game Theory
aims to predict the behaviour
of people as they interact
strategically
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How might you reason about this game?

This is known as Neil
the “Max max
payoff” feature
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Assume Neil plays right or left
with some probability
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Respond by choosing the

action that make you best off,

given your assumption.
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But Neil may think of that and

change his action...
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Abstractly...
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Data

Experimental Data

Data from 9 behavioural economics experiments
on human subjects

128 unique games with 12 071 plays

Model Data
Set of numbers that parameterise the model

Output at each intermediate stage of
computation.
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Model...

e Many parameters
e Difficult to visualise
intermediate
computation
e Difficult to identify
design flaws / poor
optimization fits
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File Edit v Terminal Tabs Help

_net/experime
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Our Solution
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GameNetViz

Game Select ~ Best to Worst
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Common Colours
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e The same colour corresponds to the same action throughout the viz



GameNetViz
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Payoff Matrix Viz
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e Allows for quick summary of a game e Detailed information, for
e \Very easy to spot mismatched payoffs when subtle differences
matter
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Hand-crafted Features
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From previous work, we know about features
that players seem to like

When hovering over a hand-crafted feature, the
row(s) corresponding to that feature light up

In this image, player 1 can achieve the highest
payoff by picking action 4 (if player 2 picks
action 2)

Non-hovered features are grayed out, to avoid
distraction
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GameNetViz
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e Each feature outputs a
different probability
distribution of playing
each action
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e Clicking on the
stacked bar charts
splits them into
grouped bar charts,
so that you can
compare an action’s
distribution across
different features




Action Response Layers

Tool tip

Sharpness: 99.08
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AR layers are weighted sums of the feature units, as
well as previous AR layers

Hovering over an AR unit produces a tool-tip
showing a breakdown of how it is composed, before
the non-linearity is applied.

The sharpness parameter of the non-linearity
function for that AR layer is also displayed
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Level distribution
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The output is a weighted sum of
all the AR units. The weight
associated with each AR is
encoded as a bar above the
AR.
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Output vs Actual Play

Compare the model’s predicted
distribution of play against observed
play (from experiments with human
players)
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GameNetViz

Game Selector

e Games can be ordered by size, or by a derived difference between the model’
s prediction and observed play
e Choosing a game from the selector will render data for that game
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DEMO
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Critique & Future Work

e The blob payoff matrix encoding is invariant to scaling, so two scaled games
look the same. But humans have a non-linear response to payoffs, and
maybe we can find an encoding that matches this.

e Hidden layer encoding not offering any insights, could be better

e Handle larger games (e.g. 100 x 100)

e Show even more data! (Parameters, optimization)
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Applause
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