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Abstract

Integrating neuroscientific data across labs is a challenging endeavour, and extracting meaning from this data
is even harder still. NeuroElectro.org collects electrophysiology, neuron type, and experimental conditions
data from published articles and provides all of this data in text format for analysis. Here, we present
NeuroElectro Data’s Visualization (NED Vis), an interactive visual interface to the data on NeuroElectro.org.
It is the first tool of its kind in the Neuroscience domain and allows Neuroscientists to form hypotheses
without having to download and wrangle with the data themselves. NED Vis consists of a filter menu sidebar
and two tabbed panels: Overview and Explore. The Overview panel provides insight into the amount of
data available for different combinations of data attributes. The Explore panel supports investigation of
relationships between attributes of interest with interactively linked plots. The filter menu allows the user to
narrow the scope of the analysis across both panels dynamically.

Introduction

Neuroscientists have conducted extensive research on the electrophysiological (ephys) properties of different
neuron types, but there are barriers to comparing and aggregating results across different studies. This can
be attributed to a lack of standard definitions and procedures as well as paywalls maintained by closed-access
journals. To alleviate this, Tripathy et al.[1] have developed NeuroElectro - a freely available web-tool that
allows users to directly compare data from different Neuroscience articles. The primary goal is to “facilitate
the discovery of neuron-to-neuron relationships and better understand the role of functional diversity across
neuron types” [1].

NeuroElectro is a Django text mining and curation application http://NeuroElectro.org developed mainly in
C-Python with a JavaScript-based front end and an SQL back end. It currently hosts experimental data from
~900 articles and is expected to grow to host the experimental data of thousands of articles. The data for each
article can be accessed by the type of neuron, its electrophysiological properties, or via a table of articles.

NeuroElectro stands apart from other text-mining projects in that it allows end users to interact with curated
data directly. Most text-mining tools in the biomedical domain assume that the end user will want an
association matrix for terms in a controlled vocabulary, such as MEDLINE or MeSH terms [2,3]. These tools
automatically generate and output an association matrix without providing the user with a way to interface
with the original data. This limits the analyses a user can perform.

Nevertheless, the power of NeuroElectro is limited in that does not provide an interactive visual interface for
the data. The current visualizations provided by NeuroElectro are static: the user is only able to view data
for one neuron type or one ephys property at a time in the form of fixed scatter plots.

NED Vis was designed to address this shortcoming. Our vision was to develop a new interactive visual
interface that supports seamless browsing and analysis of select subsets of the data. To this end, we met
with the developer of NeuroElectro to discuss high-level goals for the system. We abstracted these goals into
abstract tasks and designed and developed a system accordingly. The remainder of this report discusses this
process in detail.
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Related Work

Solutions to Similar Problems

NeuroElectro provides some crude data visualizations in the form of static scatter plots and a single PCA
analysis plot. Most text-mining tools in biomedicine do not use visualization at all, and those that do are
restricted to analyses on the derived association matrix. For example, VOSviewer [4] uses colour and spatial
position to visualize the semantic clustering and strength of association across text mined terms. The Trading
Consequence project [5] focuses on mined trading documents supported by controlled vocabularies to generate
maps of commodity trading over time.

Exploring relationships

Exploration of relationships between some of the properties in NeuroElectro’s data set is supported by the
current version of NeuroElectro (Brain region vs Electrophysiology only, metadata is only accessible via
database). However, it is a static set of strip plots that do not account for all combinations of variables and
do not allow any interaction.
Exploration of relationships is a common task in many analytics platforms such as Tableau [6], SAP BOBJ
AOLAP [7] and Microsoft Excel [8]. Generally, these platforms provide a tabular view of the data in addition
to customizable visualizations to enhance users exploration of the data. Our goal differs from these platforms
as we are not including a tabular view, we are limiting the users choices to provide a simpler experience, and
we are using plots that are not easily achieved with these platforms (e.g. interactive plots, hive plot).

Providing an overview of data

Essentially, we are facing a problem of visualizing a network when we are trying to give an overview of our
data. Over the years many solutions have been proposed for this type of task: hairball [9], matrix [10], arc
diagram [11], call network [12], hive plot [13] are among the most common. Simply visualizing the network as
a collection of nodes connected with edges (the hairball approach) seems impractical due to a large number
of nodes and connections (currently: 150 nodes and ~10k edges). Scaling is also a problem since the hairball
only gets bigger with time. The matrix approach deserves some credit in terms of data visibility and it is a
familiar visualization style to biologists, but there are two issues with utilizing matrices for this task:

1. Our data is three dimensional (neuron type, ephys property, metadata) and 3D matrices are usually
very hard to interpret. We could provide a faceted view of one matrix per metadata as a possible
solution, but the amount of screen space that would require is enormous.

2. Matrices do not scale well. The labels get too small to be legible at some point. That said, a count
matrix could provide a similar overview of information to a hive plot as long as the number of parameters
is small enough. In the implementation section we will discuss further our decision to use both a hive
plot and a matrix approach.

A call network visualization would end up looking very similar to a hairball in our case. As a result we had to
discard this possibility due to scalability issues. Arc diagrams came in as a close second as our visualization
of choice - they are easy to interpret, pleasant to look at and they can scale reasonably well with the amount
of evidence in the database. The problem with arc diagrams is that all nodes would end up being on one line
and that does not represent the three distinct groups of nodes (neuron types, ephys properties, metadata) in
our data.
In the end, we decided to use hive plots for providing main overview of our data. Krzywinski, Birol, Jones
and Marra [14] describe the advantages of hive plots in terms of gaining quantitative understanding when
visualizing networks. They also support: multiple axes, information encoding in the nodes and edges, and
scaling. The one issue with hive plots is that they are a fairly new visualization style and researchers may
have trouble understanding what they are looking at.
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Applications of Similar Solutions

Filter panels

The filter panel paradigm, where one panel is used to control what data appears in the main panel, is well
established in visualization domain [15,16,17]. An alternative solution is the filter bar, which uses less screen
real estate [18]. However, we have opted to stick with filter panels because they will never interfere with
the main view and will make it easier for the user to track which filters are applied at any given time.
Furthermore, the number of filtering options that we offer will require a larger section of the screen.

There are two basic attribute-based filtering paradigms: drill-down and parallel selection [19]. As the
referenced blog post describes, Amazon uses drill-down filtering and Kayak uses parallel filtering. Our solution
uses a hybrid of these, allowing the user to drill-down categories and apply parallel selection within.

Connected scatterplots

Since NeuroElectro data is rather diverse (dozens of electrophysiology properties for each of over one hundred
neuron types), we plan to utilize scatter plots [20] and connected scatter plots [21] for answering research-
oriented questions. Haroz et al. showed the effectiveness of the latter in representing time-series data: even
though connected scatter plots are novel to many users, they are excellent at being intuitive to understand
and capturing and holding the viewer’s attention.

Linked highlighting

There are a number of interaction approaches to linked highlighting in scatter plots [22]. Through our
consultation with the stakeholder, linked highlighting on hover was emphasized as a critical element. However,
this is not the only means of linked highlighting available. For example, linked brushing, where the user
selects a subset of points to be highlighted, is a popular choice for multi-selection [22, 23].

Hive plot

Overviews of the data will make use of the work done by Krzywinski et al. [14] and Hanson [24] for our
proposed hive plot. Various good examples of hive plot visualizations of networks are shown on the hive plot
website [13]. We have developed our visualization based on the features that are most meaningful for our
data and the questions we are trying to answer with the view (sparsity of data, node degree, edge weights,
outliers and general trends in the data). We also use a matrix and a table approach to supplement the hive
plot, since alone the hive plot does not provide enough details about connections between data types.

Colour

We have decided to use colour as a channel for linked-highlighting. Previous research suggests that colour
is one of the most powerful visualization channels [25,26] and, when used correctly, it can provide insight
into the data so intuitively that the user wouldn’t even need a legend to understand what kind of data the
channel encodes for. On the Overview panel colour is used as a measure of how many articles exist for each
connection between nodes.
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Data and Task Abstractions

Domain-specific data and tasks

NeuroElectro is a database of Neuroscience articles and it applies text-mining as well as curation approaches
to extract electrophysiology measurements, neuron type information and experimental setup conditions
(metadata) from the html-encoded articles. At this point, text-mining alone is not reliable enough since
Neuroscientists authoring the articles in question were not writing them using guidelines. As a result, each
article is a snowflake of sorts - even with very well written algorithms, automated text-mining is not at human
text interpretation level yet. Hence the need for training undergraduate curators to verify the text-mining
results and correct its errors. We focus on visualizing only the curated data, meaning that we have ~1000
articles worth of data. Note that not all articles contain all data types that NeuroElectro is able to store.

Domain-specific data types

1. Electrophysiology measurements

• These are intrinsic neuron properties: membrane potential at rest, spike threshold (minimum
membrane potential that causes a spike), input resistance, rheobase (minimum amount of current
one needs to inject to cause an spike), etc.

• Neurons communicate with the help of action potentials (voltage spikes) which are caused by cell’s
membrane voltage rising above the spike threshold causing a cascade of Sodium ions to flood into
the neuron, propagating the action potential signal down its axon and to other neurons. The cell
then closes Sodium channels and opens Potassium channels in order to return to its original state.

• Neuron signalling is an electrochemical process and electrophysiology aims to record all meaningful
characteristics that describe this process.

2. Neuron types

• It is no secret that brain contains many different kinds of neurons. Neuroscientists have not decided
on exactly how many neuron types there are and the debate has been ongoing for over a hundred
years. Nevertheless, there are resources on the Internet that attempt to offer a classification for
neuron types. NeuroElectro utilizes enhanced NeuroLex neuron classifications, and eventually
NeuroElectro may be offering its own neuron type hierarchy as we gather more data. For the
purposes of our visualization, we distinguish two levels in the neuron type classification hierarchy -
all neurons are assigned a brain region and a neuron type within that region. Each neuron type is
assigned exactly one brain region (neuron types that are present in many places or if their location
is unknown comprise the “Other Region” brain region). These assignments were performed by
Dr. S.J. Tripathy - a Neuroscience postdoc and the original developer of NeuroElectro.

3. Experimental conditions (metadata)

• This data type stores information about the electrophysiological experiment itself, such as: species,
strain, age and weight of the animal used, electrode type with which the measurements were taken,
chemical solutions used to keep the brain slice moist and semi-alive, recording temperature, etc.

• This data is important in order to compare ephys measurements from different experiments and
labs.

NeuroElectro also stores data about each article: title, publication year, authors, etc.

Domain-specific tasks

1. Explore relationships between neuron types, ephys properties, and experimental conditions.

(a) Find the neuron type, ephys measurement and metadata of interest.

4



(b) View specific electrophysiology measurement for a specific neuron type (e.g. view rheobase values
for Hippocampal CA1 pyramidal cells).

(c) Compare ephys measurements across neuron types (e.g. resting membrane potential across all or a
selected set of neuron types).

(d) Explore the effect of metadata on an ephys measurement (e.g. action potential amplitude change
with animal age).

2. Identify how many data points exist for different combinations of neuron types, ephys properties, and
experimental conditions.

3. Find out how many articles support a specific analysis.
4. Summarize the data in the current analysis scope.
5. Look up details for individual evidence lines extracted from articles.

Abstract data and tasks

Abstract data

Our data set is a table where each item (row) is data for a particular neuron type taken from a single article.
That is, each item is uniquely identified by the neuron type and article ID attributes. The attributes of
the data include 18 experimental condition indicators, 36 ephys properties, and ten that provide additional
information about the article, neuron type, and organism. The current data set has 947 rows.

At the advice of our stakeholder upon seeing the prototype, we have limited our application to analyses on
the most interesting metadata properties. These attributes in detail are:

Experimental Metadata Attributes

Organism:

1. Species (categorical)
2. Strain (categorical)
3. Weight (quantitative continuous, grams)
4. Age (quantitative discrete, days)

Other:

1. Electrode Type (categorical)
2. Prep Type (categorical)
3. Jxn Potential (binary categorical)
4. Recording Temperature (quantitative continuous, degrees C)

Article Metadata Attributes

1. PubMed ID (quantitative discrete)
2. Title (categorical)
3. Year (quantitative discrete)
4. Author (categorical)

Neuron Type Attributes

1. Brain Region (categorical)
2. Neuron Name (categorical)
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Additionally, we were advised to limit our application to the 10 most interesting ephys properties (according
to our stakeholder). We were supplied with an additional data table containing a units column and a column
indicating whether the property’s axis should be log10 transformed when plotted. All of these attributes are
quantitative continuous. They are:

1. Input resistance (M) - log10 axis
2. Resting membrane potential (mV)
3. Spike threshold (mV)
4. Spike amplitude (mV)
5. Spike half-width (ms) - log10 axis
6. Membrane time constant (ms) - log10 axis
7. AHP amplitude (mV)
8. Cell capacitance (pF) - log10 axis
9. Rheobase (pA) - log10 axis

10. Maximum Firing Rate (Hz) - log10 axis

Abstract tasks

The primary usage context for this tool is discovery. The purpose of the tool is to help Neuroscientists achieve
new insights and develop new hypotheses. This tool is not concerned with any produce tasks at this time.

Under the umbrella of discovery, a number of mid-level tasks can be identified:

1. Explore relationships between data attributes.

(a) Browse data available for analysis
(b) Identify distribution of counts across values of categorical attributes.
(c) Identify distribution of counts across values at the intersection of two categorical attributes.
(d) Identify distribution of a quantitative attribute across different values of a categorical attribute.
(e) Identify correlations between quantitative attributes.

2. Explore how much data exists for different combinations of data types.
3. Narrow scope of analysis.
4. Explore how much data exists for different combinations of data types within a narrowed scope of

analysis.
5. Look up details for individual data items.

Solution

NED Vis uses linked views and multiple panels to enable the seamless exploration of NeuroElectro’s database
by the target user, which is mostly Neuroscience students, post-docs, research associates and professors. To
cater to our target audience’s needs we provide an overview of the data and allow its filtering as well as
exploration, all performed within the application.

High-Level Design Idioms

In this section, we describe the idioms we used to support the tasks above.

We faceted the display into two panels - Overview and Explore. One panel may be viewed at a time, and the
user may switch between panels using a tab selector. The content of both panels is linked via a common filter
menu.
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Filter Menu

The filter menu partitions attributes available for filtering into three groups: Neuron Type, Organism, and
Ephys Property. Each group of filters was placed in a collapse panel to grant the user flexibility in terms of
how screen real estate is used. The filter menu supports abstract tasks 1a and 3.

The Neuron Type panel provides a nested tree-view with tick-box selectors for neuron types and brain regions.
Neuron types are grouped by brain region for ease of navigation. An “All” node is provided to make it easy
for the user to select and deselect all nodes at once. A search bar is provided at the top of the tree view for
ease of look-up.

The Organism panel provides a nested tree-view with tick-box selectors for species and two range sliders for
each of Age and Weight. The scale of the Age slider was adjusted to a log 2 scale in order to better use the
space allocated to the slider (as most of the ages are in the lower range).

The Ephys panel provides range sliders for the ten ephys properties. These have been partitioned into two
panels alphabetically to reduce use of screen space.

Overview Panel

This panel contains a hive plot and heat map view of the connectivity of NeuroElectro’s data on the top
half. It is the product of a derived data-set that aggregates information across all data points in the
current analysis. These views split the data into three broad categories - neuron type, ephys property, and
experimental condition, and physically separates them. Colour is used to encode the the amount of data
points for each combination of features using a dark blue (low frequency) to yellow (high frequency) scale
from ColorBrewer[27]. The matrix view provides specific numbers for each combination, whereas the hive
plot only captures the connectivity of properties across categories. (Supports tasks 3 and 4.)

The bottom half of the overview panel is a tabular view of the articles that are in the current analysis. As
one article may provide multiple data points, this is again a derived data-set that aggregates information
from multiple data points based on their PubMed ID. This table can be searched and reordered based on
user input. (Supports task 5.)

Explore Panel

The explore panel facets the data into four side-by-side plots. The user is able to select which attributes to
plot on the x and y axes from drop-downs above each of the plots.

Rather than having the user select a plot type, we simplify the user experience by automatically selecting a
plot that best suits the data. When both attributes are quantitative, a scatter plot is created where each
point represents a single data item. When one is quantitative and the other is categorical, a strip plot is
created. When both attributes are categorical, a frequency matrix is created where each count represents a
single data item that has those values. This eliminates the point occlusion problem that frequently occurs
when two categorical variables are plotted against each other on a strip plot. Finally, there is a blank value
to the y-axis selector so that the user may select an attribute for the x-axis only. This yields a histogram of
x-axis attribute value. (Together, these support tasks 1b - 1e.)

We have kept the default behaviour of R plots, which is to scale the axes according to the range of values
plotted. This means that the axes ranges may change as filters are adjusted.

Additionally, the user is able to interact with the data points on the scatter plots and strip plots. Hovering
over a point displays a tool-tip with the x and y values and the PubMed ID and Title of the article the item
is from (supporting task 5). Clicking on a point highlights that point in all strip plot and scatter plots on
the page. Multiple points may be highlighted at a given time. Highlighted points can then be removed by
clicking the “Remove Highlighted” button. This allows the user to remove outliers from the plot without
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using the filter menu. Ultimately, we would like to allow the user to highlight points on brush rather than
click, but getting the highlight on brush feature for R Shiny to work with interactivity is not trivial.

No significant new algorithm or data structure developments have been performed - we used existing idioms,
tools, and libraries, adjusting them to our needs and ensuring they perform well together. The bulk of the
data wrangling, loading, plot generation and interaction work is carried out in the back-end part of our
app (server.R, global.R, hive.R), while the front-end is defined by ui.R (layout, CSS, embedded JavaScript,
tool-tips, some interactivity).

What-Why-How: Recap

1. System: NeuroElectro Data’s Visualization
2. What: Data

• Categorical brain regions and neuron types data
• Quantitative continous electrophysiology data
• Mixed experimental setup data, some of it is categorical and some quantitative continous

3. What: Derived

• Node degree, edge weight (number of articles that contain information for both nodes)

4. Why: Tasks

• locate, identify, compare, summarize, navigate, filter
• distribution, trend, similarity, correlation

5. How: Encode

• Scatter plot, heat map, re-order-able and searchable table, hive plot, histogram, strip plot

6. How: Facet

• Partition; juxtapose; multiform, overview/detail; linked highlighting (explore tab)

7. How: Manipulate

• Select; Navigate: attribute reduction: cut

8. How: Reduce

• Filter: items, attributes

Implementation

Shiny app (general)

Our solution was built using the Shiny web application framework [28] for the R language [29]. Shiny server
and UI components handle all transactions between the front and back end of our application. Each major
component took advantage of a number of existing libraries, which is explained in more detail in the following
subsections.

The first step of our application performs data loading, cleaning, and wrangling. It takes a csv dump of
NeuroElectro’s database as input. We load, clean, and manipulate data using base R and dplyr [30] functions.
At this point we also generate and cache or load the cached version of a modified data-set to speed up matrix
view generation as the filters are changed. Once the data is loaded and prepped, it is passed to the UI and
server components that house the core functionality of our app.
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Filter menu

The filtering panel uses collapse panels from the shinyBS package [31]. The Neuron Type and Organism trees
use the shinyTree package [32]. The shinyTree source code was modified to improve appearance and introduce
text wrap to long labels that encroached on the space of other components. The shinyjs and V8 packages
[33,34] were used to add JavaScript commands on start up to modify the shinyTree component’s unruly
behaviour. The filter options for continuous features use slider bars from the base Shiny framework. As with
the shinyTree component, they were not perfectly suited for our needs. We modified the sliders to use log
scales via JavaScript commands called via shinyjs and V8. We implemented how the filter states were applied
to the data set and observers to update the plots only when the selected data had been changed. Default
behaviour resulted in all plots being redrawn whenever a filter element was touched, even if its value was not
changed (e.g. expanding a node on a filter tree or moving a slider without deselecting any data points).

Explore panel

The four plots of the explore panel share data that is filtered based on the state of the filter panel. The
data displayed on each plot is determined by the two axis selectors above each plot. The axis selectors are
standard Shiny UI components that did not require modification. The plots in the explore panel are generated
dynamically depending on the type of data that the user selects to view. We used the ggvis package [35] to
generate the plots in the explore panel as they promised easy interactivity. Our data-set changed based on
filtering rules and axes selected and was passed to a function we implemented to determine what type of plot
to show and to reduce repeated code. This led to problems, as interactive ggvis features, such as hover and
brush handlers, do not work well or at all with dynamic data sets and inside functions. While we considered
other plotting options, we have implemented an on click handler that highlights points in all plots in which
they appear. We also implemented action buttons to clear highlighting, remove highlighted points from all
plots, and restore removed points.

Overview panel

The overview panel has three distinct components: The hive plot, the heat map and the table. The hive
plot uses the HiveR package [36] as well as the RColorBrewer package [27] for colour selection. It also uses
modified functions designed by an R blogger [37] for the hive plot data wrangling. The hardest part was to
optimize hive plot data gathering (counting number of co-occurrences for each pair of ephys, brain regions
and metadata). Initially, with a naive implementation it took about two minutes to generate and refresh the
hive plot. Through a much more effective algorithm and built-in R co-occurrences counting functions the two
minutes have been cut down to a couple of seconds. Nodes have been positioned identical distance apart
on the axes for readability. Potentially, node distance could encode some information in the future. Node
colour represents its degree and edge colour correlates with the number of articles supporting that edge. At
first, we had encoded a few network properties into node position, size, and edge width (e.g. node centrality,
reach-ability, edge weight). However, we then realized that this information is not valuable and serves only to
make the hive plot confusing.

The heat map uses a derived data-set that contains whether or not each datum contains information regarding
features of particular interest to the stakeholder. It computes an association matrix on demand which is
passed to the pheatmap package [38] to display the associations and annotations. Like the hive plot, it uses
the RColorBrewer package for its colour palette.

The table is generated based on filter rules and is made entirely using the DT package [39] with some
non-default parameters. As its title implies, it is simply a wrapper for the DataTables JavaScript library.

The heat map, data table and hive plot respond to the filter panel. However, filtering and sorting done in the
data table do not get reflected in the other views at this time.
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Results

Use Case Scenarios for Abstract Tasks

Abstract Task 1a: Browse data available for analysis.

Specific Use-Case A: Browse attributes available for plotting and filtering:

Figure 1: A1. User navigates to “Explore” tab.

10



Figure 2: A2.User clicks on x-axis selector drop-down for any of the four plots and scrolls through options.

Figure 3: A3. User repeats for y-axis selector and discovers that the lists are the same.
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Figure 4: A4. User expands “Neuron Type” collapsible panel in filter menu and sees a list of selected brain
regions.

Figure 5: A5. User expands a tree view node for a brain region of interest to see what neuron types are listed
under that region.
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Figure 6: A6. User expands the “Organism” collapsible panel to see what filters are available.

Abstract Task 1b: Identify distribution of counts across values of categorical attributes.

Specific Use-Case B: User identifies distribution of values for AnimalSpecies:
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Figure 7: B1. User navigates to “Explore” tab.

Figure 8: B2. User selects AnimalSpecies using x-axis selector for any of the four plots.
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Figure 9: B3. User selects — using the y-axis selector for the same plot, indicating no selection.

Figure 10: B4. User sees a histogram of values for animal species.
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Abstract Task 1c: Identify distribution of counts across values at the intersection of two
categorical attributes.

Specific Use-Case C: User identifies distribution of counts for each combination of BrainRegion
and AnimalSpecies:

Figure 11: C1. User navigates to “Explore” tab.
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Figure 12: C2. User selects Species using x-axis selector for any of the four plots.

Figure 13: C3. User selects BrainRegion using the y-axis selector for the same plot.
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Figure 14: C4. User sees a frequency matrix where each cell represents to number of data points at that
intersection.

Abstract Task 1d: Identify distribution of a quantitative attribute across different values of a
categorical attribute.

Specific Use-Case D: User identifies distribution of spike amplitude property for animal species:
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Figure 15: D1. User navigates to “Explore” tab.

Figure 16: D2. User selects AnimalSpecies using x-axis selector for any of the four plots.
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Figure 17: D3. User selects spike.amplitude using the y-axis selector for the same plot.

Figure 18: D4. User sees a stripplot of spike amplitude values for each species.
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Abstract Task 1e: Identify correlations between quantitative attributes.

Specific Use-Case E: User identifies correlation between AnimalAge and spike.amplitude:

Figure 19: E1. User navigates to “Explore” tab.
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Figure 20: E2. User selects AnimalAge using x-axis selector for any of the four plots.

Figure 21: E3. User selects spike.amplitude using the y-axis selector for the same plot.
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Figure 22: E4. User sees a scatterplot of spike.amplitude values versus animal age.

Abstract Task 2: Explore how much data exists for different combinations of data types.

Specific Use-Case F: Explore how much data exists for pairwise combinations of neuron types,
ephys properties, and metadata:
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Figure 23: F1. User navigates to Overview tab.

Figure 24: F2. User expands each of the collapse panels and manually clears all filters.
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Figure 25: F3. User inspects hive-plot and sees that the brain region to ephys property connections are most
sparse.
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Figure 26: F4. User inspects the numerical values on heat map and sees: Each combination of ephys property
and metadata property are well represented (>10 entries); each combination of brain region and metadata is
present but not necessarily well represented; not every combination of brain region and ephys property is
present.
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Shortcoming: User must manually remove all filters as there is currently no reset button. This feature will be
added in the next iteration of development.

Specific Use-Case G: Identify ephys properties for which there is no data for the Pallidum
brain region:

Figure 27: G1. User completes steps 1 and 2 from previous use case.
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Figure 28: G2. User finds the row in the heat map for Pallidum.
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Figure 29: G3. User locates cells that intersect with ephys property columns.

Figure 30: G4. User sees that there is no data for maximum firing rate.
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Abstract Task 3: Narrow scope of analysis.

Specific Use-Case H: Limit scope of analysis to Cerebellum data from Mice:

Figure 31: H1. User conducts steps of Specific Use-Case B.
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Figure 32: H2. User unticks “All” then ticks “Cerebellum” - The plots are redrawn using only data points
from the Cerebellum.

Figure 33: H3. User expands “Organism” collapse panel in filter menu.
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Figure 34: H4. User unticks “All” then ticks “Mice” - The plots are redrawn using only data from Mice
Cerebella; number of bars on histogram is reduced to 1.

Specific Use-Case I: Limit scope of analysis to data where input resistance and spike amplitude
are in a specific range:
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Figure 35: I1. User conducts steps of Specific Use-Case E.

Figure 36: I2. User expands the “Ephys Properties” collapse panel, followed by the “A-M” collapse panel.
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Figure 37: I3. User adjusts range slider for input resistance - The plots are redrawn using only data where
input resistance is in the specified range.

Figure 38: I4. User collapses the “A-M” panel and expands the “N-Z” panel.
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Figure 39: I5. User adjusts range slider for spike amplitude - The plots are redrawn using only data where
spike amplitude is in the specified range.

Abstract Task 4: Explore how much data exists for different combinations of data types within
a narrowed scope of analysis.

Specific Use-Case J: Explore how much data exists for different combinations of data types
when dataset is limited to the Cerebellum and Mice:
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Figure 40: J1. User conducts the steps in Specific Use-Case H.

Figure 41: J2. User navigates to Overview tab.
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Figure 42: J3. User examines hiveplot and sees that there is data for only one ephys property - input
resistance.

Shortcoming: No way to get the number without counting.

Abstract Task 5: Look up details for individual data points.

Specific Use-Case K: User looks up details for a data point on scatterplot:
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Figure 43: K1. User conducts steps form Specific Use-Case E.

Figure 44: K2. User hovers over a point of interest in a scatterplot.
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Figure 45: K2. User sees a tootip, which displays the PubMed ID and title. User takes note of title.

Figure 46: K3. User navigates to the Overview panel.
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Figure 47: K4. User scrolls to the Table view below the hiveplot and heat map view.

Figure 48: K5. User begins to type the title in the Title column. Results filter automatically.

Figure 49: K6. User locates row corresponding to data point of interest.
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Shortcoming: User must remember or write down the title as copy-paste functionality is not available from
the tooltip. Ideally, the details would be available on click.

Evaluation by Stakeholder

Our stakeholder has evaluated the our product and has given the following feedback.

The aspect of the application he likes most is that it very cleanly allows the user to visualize only the data
that they are interested in, be it specific brain regions, neuron types, or data matching specific experimental
conditions, using the organism/metadata filter tab. This was one of his key requirements, and he thinks it has
been implemented very well. In the time he spent experimenting with the application, he discovered things
he had not noticed before. For instance, he had not realized how correlated the ephys properties rheobase
and input resistance were.

He quite likes the heat map on the overview page because it clearly indicates how much data is at the
intersection of each pair of attributes. But he is concerned that the hive plot and heat map express much of
the same thing. He prefers the heat map because it is harder to see specific data using the hive plot.

He requested that the heat map and hive plot colour map be log transformed because it is difficult to tell the
difference between feature pairs with no data and just a small amount of data.

He said that detail look-up is good but could be improved by linking data points in the Explore tab to the
underlying data source directly.

Discussion and Future Work

Implementation Approach

Originally, we planned to use JavaScript with a few libraries (D3.js [40], angular.js [41]) for our project,
however, the team’s familiarity with R and the desire to learn Shiny [28] played the decisive role in our
framework choice. Given the chance to choose the framework again, we would have chosen Shiny due to its
ability to handle large amounts of data and generate complex plots with relatively high speed. D3 has better
integration with the front-end, but JavaScript and CSS injections in Shiny serve a similar purpose, even if
less elegantly.

We have learned that Shiny provides a solid framework for front-end web development and R data analysis
visualizations. The dynamic integration of data frames and vectors in R with the rendered Shiny plots is
quite impressive. Unfortunately, customizing the default behaviour becomes a chore because of the modular
nature of Shiny. One could say that getting something to work in Shiny is fast and simple, but getting the
exact feature to work (if it is not the default behaviour) can be very difficult and time consuming.

Data wrangling speed is a usual concern when dealing with large volumes of data that are transformed into
plots. We ran into this problem with the overview panel - both the hive plot and the heat map took a
very long time to generate initially, and we had to optimize their data gathering, parameter calculating and
plotting features in order to achieve reasonable online refresh speeds. The hive plot generation is already
on an acceptable time scale, but the overview heat map still takes too long - its generation pipeline can be
optimized further if data wrangling is united with the hive plot’s.

As noted above, we ran into major problems using the ggvis package. The decision to use this package was
made based on the considerable buzz surrounding its ease of use and rich interactive features. These features,
particularly brush and hover handlers, are incompatible with functions and dynamic data sets. While there
are work-arounds to make these features work to some degree with dynamic data sets, we were unable to find
a way to make them work when called via a function. Our function to determine the nature of the data to
plot and remove missing values (something that ggvis also does not do, unlike its ancestor ggplot) is used
by all four plots in the Explore panel and is about 120 lines long. It would be possible for us to move this
functionality out of our plot generating function, but it would result in 480 lines of duplicated spaghetti code,
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which would make future work on the project extremely difficult (and according to one of the authors, it
would ‘hurt his soul’). As we aspire to follow the DRY principles [42] in our work, we will explore other
plotting libraries going forward that support clean code.

Analytical and Semantic Shortcomings

One limitation of the current system is that it is restricted to a select subset of ephys and metadata properties.
This decision was made in conjunction with the stakeholder in order to improve user experience. Paring down
the properties list made it so that the number of entries in the axis selector drop-downs was reasonable and
the hive plot less busy.

However, there could be value in exploring less common ephys properties and metadata measurements. In
fact, one of the original motivations for the Overview panel was to discover attributes for which little data
exists. With these removed, the utility of the Overview panel is less obvious. Ideally, there would be a way
for the user to access this data without increasing the clutter in the system, perhaps by having an advanced
options menu.

A potentially misleading aspect of the system is how it handles NA values in conjunction with filters. There
are many missing values in our data, and if we removed every row with a missing value, we would have very
little data to work with. However, when a user applies a filter, the assumption is that they want to look at
values that are within that range for certain. Currently, we include data points with null values unless a
filter on that value is explicitly applied. For instance, data points for which AnimalWeight is NA are plotted
unless the user applies a filter using the range slider for Weight. Because there are so many NA values for
AnimalWeight, the user need only move the slider a little bit and many points are removed from the plot.
This creates the illusion that the removed points fell outside of the specified range.

Another problematic aspect of the filter menu is that the user can collapse a panel while a filter is applied and
then forget about it, producing an “out of sight out of mind” effect. Ideally, we would have a non-intrusive
way to encode the fact that a filter has been applied on a given panel, perhaps by altering the colour.

The Overview tab is busy and difficult to make sense of unless much of the data is filtered out. One problem is
that the heat map contains a number of redundant cells (the upper triangle) as well as the intersections within
data type (Brain Region by Brain Region). We could increase the signal-to-noise ratio by plotting Ephys
Properties and Metadata on one axis and Brain Region and Metadata on the other, which would eliminate
much of the uninteresting and redundant data. However, we will need to consult with our stakeholder to
confirm that within-type intersections are not of interest. Another feature that could make the heat map
more approachable would be a row/column for the sums of values across columns and rows.

In the near future we would like to add more interactivity to the hive plot: each point and edge should
provide a detailed tool-tip upon mouse-over or click and brush selection should allow the user to filter the
data similar to the filter panel.

As it stands, the system only supports hypothesis generation, not hypothesis testing. The analytical power of
the system could be improved considerably by integrating some basic statistical functionality, such as means,
ranges, correlation coefficients, and p-values. Doing so would allow the system to benefit most fully from the
strengths of the R framework.

User Experience and Style Shortcomings

There should be an easier way for users to get data from specific points on demand. Currently, the tool-tip
gives the title and PubMed ID for an article, but if the user wants more information of the article, they
must note the title, switch to the Overview tab, and enter it in the search bar. This information should be
available on demand without requiring a tab switch.

There are a number of improvements that could be made to the filter menu. First, there should be a reset
button so that the user can remove all filters in one click. Second, there should be a scroll-bar for the filters
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menu that appears when its contents extend below the plots. This is not trivial to do in R-Shiny panels and
will require direct manipulation of underlying JavaScript objects.

Other stylistic improvements that could be made include:

1. More consistent styling of axis labels and drop-down menu items
2. Cleaner, shorter axis labels with smarter spacing
3. Better placement of data type legend for heat map (not trivial to do with pheatmap library)

Conclusions

We have successfully developed a newer and better visualization tool for the NeuroElectro website. Shiny
framework ensures Ned’s integratability with the NeuroElectro database and makes it capable of performing
the main tasks defined by its original developer - Dr. S.J. Tripathy (outlined above in the data and tasks
abstraction section). The new visualization provides an overview of the database with multiple plots and
table as well as a more finely targeted exploration panel that allows Neuroscientists to investigate the brain
regions and ephys properties of interest. The application also has a filtering panel that is integrated with
both overview and explore panels and allows subsetting the database by brain region, ephys values and
experimental metadata. This functionality enables users to analyze the relevant data.

Our visualization can and will be improved to better serve field specialists. During the first few months of the
beta deployment period we plan to gather usage data and feedback. With these we plan to ensure that we
have covered every use case scenario and that the tool is running smoothly on various platforms. We are also
hoping to get data about stress-resistance (online concurrent usage of the visualization app). If NeuroElectro
becomes wildly successful and we have an absolute need for a more customized visualization, the possibility
exists to re-write the existing code in JavaScript. Alternatively, more efficient Shiny implementation is also
possible as not all the algorithms and functions have been optimized in the current implementation due to
time restrictions.
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