Wranglr

Executive summary

Searching through journal articles is tedious and the current convention of filling in
forms for keywords and authors requires multiple searches and refreshes. Wranglr
uses a recommendation engine and an interactive web interface to actively explore
literature. A prototype using a database of geophysics articles will be demonstrated.

Personnel

Ben Bougher (ben.bougher@gmail.com)

Principal engineer

Ben holds a physics degree from Dalhousie University and has spent 5 years in
various research and software development roles. He is currently an MSc candidate
at UBC studying machine-learning applications in seismic imaging and moonlights
developing cloud-based geophysics software.

Task

Literature search engines are well adept to specific queries, where the user has a
narrow search criterion. The use case that motivates Wranglr is finding relevant
articles with uncertain or “fuzzy” search criteria.

Current scenario

The common workflow of finding articles with fuzzy search criteria is shown in
Figure 1. First, the user searches using a best guess at keywords. Upon scanning the
results, they are either happy with what they have found or they adjust their
criteria. The new keywords are used to perform a refined search and this process is
iterated until they are satisfied. This scenario requires page refreshes and form re-
filling, which discourages exploration.



Fuzzy search
!

Scan results

I
Yes! Done!

No!

|
Change query
I

Refined search

Figure 1: Fuzzy searching scenario using conventional journal searches.

InfoViz approach

Wranglr aims to offer a visualization approach, where it applies principles of
information visualization to augment the search capability of the user. The articles
in a journal can be considered items, containing attributes such as associated
keywords and authors. Previous work has modeled journal databases as a network
of citations, but alternatively Wranglr forms clusters of articles based on similarity
measurements of their attributes. Modeling the data as items, attributes, and
clusters suggests an idiom involving tables or lists. An example of the proposed
interface is shown in Figure 2.

w CHECK OUT THE GOODS!

inversion Equivalent images derived from very-low-frequency (VLF) profile data
Fred K. Boadu

MMT forward modeling for a layered earth with
- arbitrary anisotropy

Duncan Child Thomas Bohlen
Johan O. A. Robertsson
Autotracking of faults on 3D seismic data
Bjern Ursin N . . N .
. ane,@wn Energy balance of a drill-bit seismic source, part 1: Rotary energy and

Eirik G. Flekkay radiation properties

P. Frempong X
microseismic Felix J. Herrmann

Interval velocity analysis in the dip-angle domain

Steven R. Pride 3D prestack plane-wave, full-waveform inversion

Martin Schéfer
Acquisition and processing pitfal associated with cipping near-surface seismic reflection traces
Lasse Amundsen

Lisa Groos A homotopy method for well-log constraint
Ellen Gomes . .
waveform inversion

This 'ssue of G

Intellectual Property

Figure 2: Prototype interface for Wranglr. The left part of the display shows a cluster of attributes
(authors and keywords) and on the right is a list of items (articles). The user ranks the importance of the
attributes by moving them closer or farther from the center, which dynamically updates the list of items.

This interactive interface encourages exploration of the search space.



The new scenario of fuzzy searching becomes much more exploratory. The initial
fuzzy search brings users to the interface in Figure 2. The user can move and delete
attributes based on perceived importance, which will dynamically update the list of
items. The user can explore the database interactively without re-filling forms or
refreshing the page.

Wranglr does not encode the data itself but instead encodes metadata about the
relationships between items. The dimensionality of the data is relatively small,
which allows Wranglr to take full advantage of the spatial channel with minimal
occlusion and clutter. The user-perceived importance of the attributes is encoded in
the spatial location. The closer to the center the user places an attribute determine
the attribute ranking used to update the items. Ordering of the items encodes the
search query ranking.

Additional abstraction uses size to encode the correlation between attributes and
items. For example, hovering over an attribute changes the text size of the items
based on the relevance of the specific attribute. This is a two-way mapping, as
hovering over an item changes the attribute text size.

Wranglr will use embedding to manage additional attributes such as abstracts and
DOIs, but specific display idioms are still undecided.

Data

Although this idiom can be applied to any article database, recent work at a
geophysics hackathon scraped the Journal of Geophysics and performed
rudimentary machine learning and feature extraction. Text processing and
clustering on the articles extracted a set of keywords and authors. Scoring each
keyword and author in an article forms a feature vector. For example, first author
gets a higher score than a reference or cited by, and a keyword appearing in a title
receives a higher rank than appearing in the abstract.

The articles can be ranked based on a query of authors and keywords. Weighting the
query attributes allows for biasing the search ranking.

Implementation

The Wranglr prototype will be public facing web app served on Google App Engine.
The backend and machine learning aspect of the app will be written in Python and
the interactive user interface will be on top of D3.

Project plan

Much of the project work has been heavily front-loaded. Basic machine learning
algorithms have been developed, and the data with feature vectors is in an SQL



database on Google Cloud Services. An initial frontend framework has been
developed in D3. A prototype full stack application is currently serving at
https://geophyzviz.appspot.com/ and the project code is available at
https://github.com/ben-bougher/GeophyzViz. The current application has a place
holder for the search ranking (AKA random number generator).

Search ranking integration ~ 2 days of effort, medium risk

The search-ranking algorithm needs to be integrated into the app. This is a medium
risk task as the algorithm might slow down the required interactivity of the
application.

Frontend design ~ 5 days of effort, low risk
This task requires final decisions on encodings and idioms, as well as an
aesthetically pleasing interface.

These first two milestones need to be completed by 30 November to allow time for a
short validation study before the project deadline.

Previous work

This project shares a very similar task to PaperQuest, but takes on a different
approach. PaperQuest modeled the articles as a network and used symbols to
encode the data. This approach does not abstract the data, and instead uses spatial
encodings to abstract learned relationships and clusters between article features.



