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ldiom design choices: Part 2
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ldiom: dynamic filtering

* item filtering

System: FilmFinder

* browse through tightly coupled interaction

—alternative to queries that might return far too many or too few
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[Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman.
Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313-317, 1994.]



ldiom: scented widgets

* augment widgets for filtering to show information scent

—cues to show whether value in drilling down further vs looking elsewhere

* concise, in part of screen normally considered control panel
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[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans.
Visualization and Computer Graphics (Proc. InfoVis 2007) 13:6 (2007), 1 129—-1136.]



ldiom: DOSFA

* attribute filtering
* encoding: star glyphs

[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets.
Yang, Peng,Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 105—112, 2003.]



ldiom: histogram
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* static item aggregation
e task: find distribution
e data: table

* derived data
—new table: keys are bins, values are counts

Cat Count

* bin size crucial
— pattern can change dramatically depending on discretization

—opportunity for interaction: control bin size on the fly



ldiom: boxplot

* static item aggregation

» task: find distribution N i
* data: table T
* derived data ' g
— 5 quant attribs o - :
* median: central line
* lower and upper quartile: boxes O . _: o
* lower upper fences: whiskers >
—values beyond which items are outliers rll ; L mlm

—outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 201 2. had.co.nz]



ldiom: Hierarchical parallel coordinates

* dynamic item aggregation
* derived data: hierarchical clustering
* encoding:
—cluster band with variable transparency, line at mean, width by min/max values

— color by proximity in hierarchy
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[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner.
Proc. IEEE Visualization Conference (Vis °99), pp. 43— 50, 1999.]




Dimensionality reduction

* attribute aggregation
—derive low-dimensional target space from high-dimensional measured space

—use when you can’t directly measure what you care about

* true dimensionality of dataset conjectured to be smaller than dimensionality of measurements

e [atent factors, hidden variables
Malignant Benign

Tumor \ B
Measurement Data — DR —

data: 9D measured space

derived data: 2D target space
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Dimensionality reduction for documents
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Dimensionality vs attribute reduction

e vocab use in field not consistent

—dimension/attribute
* attribute reduction: reduce set with filtering
—includes orthographic projection

* dimensionality reduction: create smaller set of new dims/attribs

—typically implies dimensional aggregation, not just filtering
—vocab: projection/mapping



Estimating true dimensionality

* how do you know when you would benefit from DR?

—consider error for low-dim projection vs high-dim projection

* no single correct answer; many metrics proposed
—cumulative variance that is not accounted for
—strain: match variations in distance (vs actual distance values)

—stress: difference between interpoint distances in high and low dims

2
stress(D,A) = \/Zijg':’:gf”)
i i

m D: matrix of lowD distances
B A: matrix of hiD distances J;



Estimating true dimensionality

* scree plots as simple way: error against # attribs

@ Use Log Scale

—original dataset: 294 dims
—estimate: almost all variance preserved with < 20 dims

[Fig 2. DimStiller:Workflows for dimensional analysis and reduction. Ingram et al. Proc.VAST 2010, p 3-10]



Dimensionality Reduction

* why do people do DR?
—improve performance of downstream algorithm
* avoid curse of dimensionality

—data analysis
* if look at the output: visual data analysis!

e DR tasks

—dimension-oriented task sequences

* name synthetic dimensions, map synthetic dims to original ones

— cluster-oriented task sequences

* verify clusters, name clusters, match clusters and classes

[Visudlizing Dimensionally-Reduced Data: Interviews with Analysts and a Characterization of Task
Sequences. Brehmer, Sedimair, Ingram, and Munzner. Proc BELIV 2014.]
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Linear dimensionality reduction

* principal components analysis (PCA)
—describe location of each point as linear combination of weights for each axis

—finding axes: first with most variance, second with next most, ...

[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]



Nonlinear dimensionality reduction

* many techniques proposed
—MDS, charting, isomap, LLE, T-SNE

—many literatures: visualization, machine learning, optimization, psychology, ...

* pro: can handle curved rather than linear structure

* cons: lose all ties to original dims/attribs

—new dimensions cannot be easily related to originals



MDS: Multidimensional Scaling

* confusingly: entire family of methods, linear and nonlinear!

* classical scaling: minimize strain
—early formulation equivalent to PCA (linear)

—Nystrom/spectral methods approximate eigenvectors: O(N)
* Landmark MDS [de Silva 2004], PivotMDS [Brandes & Pich 2006]

—limitations: quality for very high dimensional sparse data

* distance scaling: minimize stress
—nonlinear optimization: O(N?)
» SMACOF [de Leeuw 1977]

—force-directed placement: O(N?)
* Stochastic Force [Chalmers 1996]

* limitations: quality problems from local minima

* Glimmer goal: O(N) speed and high quality



Spring-based MDS: naive

* repeat for all points
—compute spring force to all other points
—difference between high dim, low dim distance

—move to better location using computed forces

* compute distances between all points
— O(N?) iteration, O(N?) algorithm




Faster spring model: Stochastic

* compare distances only with a few points
—maintain small local neighborhood set

—each time pick some randoms, swap in if closer

* small constant: 6 locals, 3 randoms (typically)
—O(N) iteration, O(N?) algorithm

20



Faster spring model: Stochastic

* compare distances only with a few points

—maintain small local neighborhood set

21



Glimmer algorithm

 multilevel to avoid local minima,
designed to exploit GPU Interpolate

|
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* restriction to decimate

* relaxation as core computation

. . N\ Interpolate L7
* relaxation to interpolate up to next 5 1 o T e O
level i e
Restrict\, s A e
(T —— Reuse
Relax ~—~~» GPU-SF

[Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009. |
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Glimmer Strategy

* stochastic force alg suitable for fast

GPU port
—but systematic testing shows it often
terminates too soon — GPU-SF — Glimmer|
0.35
0.3
8 0.25 -
* use as subsystem within new multilevel 3 ,
GPU alg with much better £
convergence properties 3w
NS om—— ] S— Y 1 S——
0

100 5100 10100 15100 20100 25100 30100 35100
Grid Cardinality

[Fig 2,4. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009. |

23



Stochastic termination

* how do you know when it’s done!
—no absolute threshold, depends on the dataset

—interactive click to stop does not work for subsystem
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* sparse normalized stress approximation
—minimal overhead to compute (vs full stress)

—low pass filter
[Fig 9. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009. |



GPUs

e characteristics
—small set of localized texture accesses
—output at predetermined locations
—no variable length looping

—avoid conditionals: all floating point units execute same instr at same time

* mapping problems to GPU
—arrays become textures
—inner loops become fragment shader code

— program execution becomes rendering

25



Finding and verifying clusters

Glimmer Pivot MDS

* sparse docs dataset
—28K dims, 28K points

* speed equivalent to classical

* quality major improvement R i
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[Fig 8, 9. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009. |



Methods and outcomes

* methods

—quantitative algorithm benchmarks: speed, quality

* systematic comparison across |K-10K instances vs a few spot checks

— qualitative judgements of layout quality

* outcomes
— characterized kinds of datasets where technique yields quality improvements

* sparse documents

* followup work

— Q-SNE: millions of documents

[Dimensionality Reduction for Documents with Nearest Neighbor Queries. Ingram, Munzner.
Neurocomputing. Special Issue Visual Analytics using Multidimensional Projections, to appear 2014.]
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