. 295i00as
oo’ °
528 0 %0e
A4
s 99009
@ e 293¢s 60
[ ]
( g ) . @® oo
e P e ® O '..
K2 ®. -
® < 000 50 0.0
. ~ P
x B
. ohe

r T T T T T T T T T T T T T T T T T T T
08 AM 08 AM 10AM 1AM 12PM 01PM 02 PM 03 PM 04 PM 05 PM 06 PM 07 PM 08 PM 09 PM 10PM 11 PM Tue 30 01 AM 02AV 03 AM

#FluxFlow: Visual Analysis of
Anomalous

Jian Zhao, Nan Cao, Zhen Wen, Yale Song, Yu-Ru Lin, Christopher Collins.

Presenter: Keqian Li



What: SOCIAL MEDIA
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Why: Abnormal conversational threads

Rioters attack London
zoo and release animals

Rioters cook their own
food in McDonald's girl’

8

Police 'beat a 16-year-old

London Eye set on fire

Rioters attack a children’s
hospital in Birmingham

Army deployed in Bank

Miss Selfridge set on fire




How: FluxFlow

Anomalous Threads
Feature Extraction Detection ER 5 i
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Abnormal Retweet Threads Detection: A
Data mining approach

* One-Class Conditional Random Fields Model
(OCCRF)

— temporal dependency, due to mechanism in RT time
series data

— one-class nature. There is little to no example (or even
a clear definition) of true anomalies

— contains a set of hidden variables to capture the
underlying sub-structure of the sequential data
* Extracted Feature for each single retweet

— User profile features: counts of followers, friends,
status

— User network features: in-degree and out-degree

— Temporal features: intervals between two adjacent
tweets in the sequence



Data mining pipeline
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RT Thread Visualization:
RT Thread Glyph
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RT Thread Visualization: RT Thread

Timeline
Hidden Variable: State #1 State #8
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System interface

Chuster View.
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Hierarchical
cluster of RT threads by topics
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MDS view of threads from high dimensional
feature space

score: 0.18

sentiment: 0.51

users: 915

start: 2012-10-29 03:09:12

end: 2012-10-30 02:37:20
keywords: hurricane, ill, win, mph,
wind, blowing trees, trees, blowin,
blowing, real, blow, storm, still, use,
making, stop, fuck, people, cause,
look




User social connections at the intra- or
inter-thread level




Deep-Level Information for Input feature
vectors, model hidden states, raw tweets

Features View States View Tweets View

Feature vectors

Features View

Features View SECCAC N Tweets View Raw tweets
y hope dgamage the really really really nice . ~Romney y's g ng pre! p:
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Visualization techniques summary

How:Encode

How-Facet

How: Reduce

How: Manipulate

Glyph, Thread Timelines

Multiform, Overview/ Detail.
linked highlighting.

Item filtering, Iltem aggregation,
Attribute aggregation, Elide,
Superimpose

Highlighting, Project, Zoom



Task Summary

T1 Summarizing and aggregating important features of
retweeting threads.

— Glyph, Cluster View, MDS View

T2 Indicating characteristics and connections of involving
users.

— User relationship graphs

T3 Revealing temporal patterns of information spreading.
— Thread Timeline

T4 Facilitating visual data comparisons and correlations.
— Cluster View, MDS View

T5 Accessing deep-level information of the model and
input.

— Q’/_hread Timeline, Features View, Status View, Tweets
iew



Evaluation

« Datasets: two 10% Twitter feed datasets collected
during two significant events:
— 2012 Hurricane Sandy(52 million tweets)
— 2013 Boston Marathon Bombing(242 million
tweets)
« Baseline: One-Class SVM (OCSVM) [Scholkopf et al.,
2001]

* Ground truth: manually labeled by three annotators
to based on reports after the events



Comparison Results
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Accuracies of OCCRF and OCSVM in correctly
detecting rumors in the top-K retweeting
threads ranked by the models in datasets: a)
Hurricane Sandy, and b) Boston Bombing.



Case Study of Hurricane Sandy
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Critiques

Data

— Incorporate further content attribute(e.g., topics, tags, deeper
semantic analysis)

Data mining algorithm
— Improve on algorithm scalability and response time
— Decouple with specific models

— More insights about the model beyond hidden states, e.g.
interactions of model parameters

Visualization

— Timeline visualization need better reducing techniques to be
scalable for real social network data

— Better to show the “chain” of retweeting, and influence between
users

Evaluations
— Stronger ground truth for quantitative evaluation
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