Statistical Graphics: Curve Boxplot

CPSC 547 Presentation Ken Lau

- 1D quantitative attribute is easy
 - · How to deal with 2D-3D curves?
 - Functional Data
 - Isocontours
 - Streamlines/Pathlines

Big Picture

What: Derived

- Functional Band Depth
 - Measure of centrality for ensemble of functions
 - Sorting in higher dimensions

Computing the Band

- Given an ensemble of n functions:
 - $\{f_1(x), f_2(x), \cdots, f_n(x)\}\$
- Repeatedly subsample j of them and define the band as:

$$\begin{split} B\big(f_1(x),\cdots,f_j(x)\big) &= \\ \big\{(x,y): x \in \mathscr{D}, y \in \mathscr{R}, \min_{k=1,\cdots,j} f_k(x) \leq y \leq \max_{k=1,\cdots,j} f_k(x)\big\}. \end{split}$$

Computing the Band

Computing the Band

What: Derived

Band Depth

• Equation:

 $BD_j(g(x)) = \operatorname{Prob}[g(x) \subset B(f_{i_1}(x), \cdots, f_{i_j}(x))], \quad 1 \leq i_1 \leq \cdots, \leq i_j \leq n$

- Probability of a curve falling between the Band with subsample size j
- Compute BD for every function
- · Highest band depth value is assigned the median

Modified Band Depth

- Includes portion of time a function lies inside the random band
- Provides more reliable results and prevents degeneracy

Generalization to multivariate Curves

Convex Hull

Non-convex Set

· Non-parametric method

- Not captured by point-wise mean

- Ex. Red curve on left and Purple on right

- No model assumptions
- Method to visualize variability among complex ensemble members
- Minimizes visual clutter and focus on important information