
ifcXMLNetwork: A Visual Interface for Exploring and Understanding
ifcXML Data

Nayantara Duttachoudhury∗

University of British Columbia

ABSTRACT

IfcXML files are domain specific type of XML files which are gen-
erated from building information models (BIM). Unlike most XML
files, they do not have an inherent hierarchy of their own. Data in-
stances in the ifcXML file are identified through unique identifiers
and these are used to connect one data instance to other. This re-
sults in long chains of connections through multiple reference iden-
tifiers. At present there is not effective method of extracting and
understanding these connections. The only way a user can see how
one data instance is connected to another is by manually searching
and following this path of connections through the ifcXML file.

This paper introduces a new system called ifcXMLNetwork
which generates a network for each data instance by finding all
the other data instances it is connected through its identifier. The
purpose of ifcXMLNetwork is to make it easier for users to find re-
lationships and connections in ifcXML files without manually nav-
igating through the data file.

1 INTRODUCTION

Building Information Modelling (BIM) [3] is a process involving
the generation and management of digital representations of phys-
ical and functional characteristics of places. Building information
models (BIMs) are files which can be exchanged or networked to
support decision-making about a place. Current BIM software is
used by individuals, businesses and government agencies who plan,
design, construct, operate and maintain diverse physical infrastruc-
tures, such as water, wastewater, electricity, gas, refuse and com-
munication utilities, roads, bridges and ports, houses, apartments,
schools and shops, offices, factories, warehouses and prisons. Au-
todesk Revit (shown in fig 2) [2] is one such BIM software. BIM
models created in Revit can be saved in IFC [4]form.

IFC (Industry Foundation Classes) is a data model developed
by the International Alliance for Interoperability and is used for
modelling in the building industry. IfcXML [5] is its XML spec-
ification. IFC files can downloaded from building models created
in Autodesk Revit [2]. Autodesk Revit is a Building information
modelling (BIM) software for architects, structural engineers, MEP
engineers, designers and contractors. IFC/ifcXML specifications
based convertors can be used to convert IFC to ifcXML. Besides
IFC, there are other standards that building data can be exported
into such as Microsoft Access, gbXML or DWL. But it is seen that
ifcXML contains information not supported by other standards, so
it is preferred. There are many challenges with ifcXML data. Com-
pared to other standards, it is big and has the most complex schema
[1].

ifcXML files are a domain specific type of XML files with a
complex schema structure. But they do not have an inherent hi-
erarchy of their own. Data instances in the ifcXML are identified
through unique identifiers knows as id and connected to each other

∗e-mail: nduttac@cs.ubc.ca

through reference identifiers known as idRef. This results in long
chains of connections across multiple id’s. The only way a user
can see how one data instance is connected to another is by man-
ually searching and following this path of connections through the
ifcXML file.

ifcXMLNetwork aims to make this process much simpler by
generating a network for each data instance by finding all the other
data instances it is connected through its id. Users can now easily
find relationships and connections in ifcXML files without navigat-
ing through the data file.

2 RELATED WORK

XML visualization is not a new concept. There are many online
XML viewers [7] that extract the hierarchical form of XML data
and visualize it as a tree. But each XML file is different from an-
other. XML files across different domains are very different. Do-
main specific visualization of XML data has been done. These vi-
sualizations are distinct from each other, even though they all have
XML data in common. This shows that XML data visualization is
very domain specific.

2.1 Linguistic XML
In XCES [9], the authors have created an XML-based standard en-
coding for linguistic corpora. This shows us that the need for stan-
dardizing XML data is consistent throughout all domains. Dipper
et al. [8] have applied visualization to linguistic XML data to find
patterns in annotated data. After that, an OWL and XQuery based
mechanism [10] was used to retrieve linguistic patterns from XML-
Corpora. Finally in 2008, an ontology of linguistic annotations [11]
was created based on existing standardizations for integration of
linguistic data in XML form.

2.2 Genomic Visualization of XML Data
CGView [12] is a Java application and library for generating high-
quality, zoomable maps of circular genome. It converts XML data
to a graphical map. In some cases, XML languages such as Phy-
loXML [13] were created to store and exchange the structures of
evolutionary trees and associated data from the complex schema
described through an XSD. PhyloXML was extended to a visual-
ization known as Interactive Tree of Life [14] by Ivica Letunic et
al.

2.3 XML Data visualization Software
GGobi [16] is an interactive and dynamic for data visualization.
One of the data types it visualizes is XML data. Software architec-
tures based on XML data have also been visualized [15]. XML-
based static type checking and dynamic visualization for TCOZ
[17] develops a type checker for detecting static semantic errors
in the TCOZ specification. There are many more XML data vi-
sualization softwares, but they all cater to different kinds of XML
data.

2.4 IFC Visualization
Visualization of ifcXML data is a field that remains unexplored.
There are a few IFC checkers and viewers in the market. IFC check-

Figure 1: Screenshot of complete System.

ers check if an IFC file is defined correctly and all IFC files related
to the same project are appropriately integrated. State of the art IFC
viewers like Solibri extract information from IFC files and display
a 3D model of the building. These viewers make it possible for a
user to navigate through the virtual building and explore its spa-
tial structure. Information such as dimensions of a flow terminal
and other spatial details about objects in a building can be found
through Solibri (fig 3). But it fails to answer many questions whose
answers are deeply embedded in the data and not directly related
through spatial details. Understanding how different objects are re-
lated to each other and by what relationship is one such situation.
Also since Solibri has a nomenclature of its own, there are data in-
consistencies. In such cases, the only option is to explore the raw
ifcXML data.

3 PROBLEM DESCRIPTION

IfcXML files have very complex schemas. Most XML files have an
underlying tree hierarchy to them. In ifcXML files, this hierarchy
is redundant. The entire file is defined in the root node. Following
the root node, all the possible different elements with their data in-
stances are defined as a list of 2nd level nodes. This can be seen
in fig 4 where ‘ifc::ous’ is the root node under which the entire file
is defined. Following that is a list of elements such as ifcRelCon-
nectsPathElements.

We can understand the schema by drawing an analogy to rela-
tional databases, even though ifcXML data is unstructured. ifcXML
is a domain specific type of XML data. Like tables in relational
databases, we have elements in ifcXML. These are of two types,
relational and non-relational. Non-relational elements give new

information about an object and relational elements connect two
non-relational elements through a relationship. For example, ifc-
ContainedinSpatialStructure is a relational element connecting two
data instances in non-relational elements such as ifcFlowTerminal
and ifcDistributionPort. This connection tells us that a data instance
in ifcFlowTerminal is in the same spatial structure as another data
instance in ifcDistributionPort. In fig 5, A and C are non-relational
elements while B is a relational element.

Each element has a certain number of data instances in it, like ta-
bles have rows. Each element has attributes, like names of columns
in tables which have separate values for every row. One attribute
is reserved for the id, which is the global identifier for each data
instance. Many data instances also have an idRef. This acts as a
pointer to another data instance in a different element. In relational
databases, we have foreign keys in tables which point to primary
keys of other tables. For ifcXML, instead of pointers between ele-
ments, idRef’s are pointers between specific data instances. Proper-
ties of objects are often not attached directly to a single element but
related indirectly through these reference identifiers. Some of these
reference paths are very long. Analyzing how different elements
and their attributes are linked to get information about objects and
their properties is the biggest challenge with ifcXML data.

The purpose of ifcXMLNetwork is to help understand ifcXML
data better by visualizing it. The dataset used is the ifcXML file of
the mechanical model of the CIRS building in UBC. Here is a recap
of the terminology to understand the data better.

3.1 Terminology

• Schema: Structure of ifcXML file.

Figure 2: Building Information Models in Autodesk Revit

• Objects: Real world objects in the building. E.g. flow termi-
nal in room 007 in the basement.

• Properties: Information about objects. E.g. type of flow ter-
minal.

• Elements: Similar to tables in relational databases. Are of
2 types - relational and non-relational. Relational elements
connect non-relational elements to each other through id’s.

• Data instances: Rows of data in tables.

• Attributes: Columns in a table with separate value for each
data instance or row.

3.2 Usage Scenario
Rob, a civil engineer has the IFC (or ifcXML) file of the CIRS
building in UBC. He wants to see which distribution ports belong
to the same system as a particular flow terminal. He tries to con-
vert the IFC file to a .rvt file to view in Revit. But this transfor-
mation leads to loss of information. Next he uses an IFC viewer
like Solibri. But Solibri has naming conversions of its own. This
leads to inconsistencies in the data. Also, Solibri cannot capture all
the information from the IFC file. Now, the only solution for Rob
is to manually extract information from the ifcXML data. But the
ifcXML is very huge with information spread across the file. Our
visualization aims to make this process much easier for Rob.

4 DESIGN

The goal of the project is to create a simple and easy-to-use visual-
ization that shows the different relationship between elements in an
ifcXML file. It allows users to see how different data instances in
non-relational elements are connected through relational elements.
For example, a user might need to know which distribution ports
are connected to the same flow terminal. Our system makes it easy

to find relationships like these. All a user would need to do is gen-
erate the relationship network of the particular flow terminal and
check the distribution ports connected through the relational ele-
ment ifcRelConnectsPortToElement.

4.1 Tasks
Our visualization system helps the user perform these tasks:

• Summarize all common non-relational elements in terms of
the subsystems they belong to.

• Locate a data instance whose identifier is already known.

• Explore and find a particular data instance from the tables
generated from the different segments in the overview view.

• View the relationship network of a particular data instance to
see which other data instances it is connected to and through
what relationship.

4.2 Encoding
The tasks are encoded using two main visualization idioms. The
overview view is visualized using heat map where each segment is
colour coded. The colour gradient goes from light yellow to dark
red as seen in fig 7. The range of items is 0 - 100 with each coloured
section for 20 items. Node-link diagrams are used to encode the
relationship network where red and green nodes refer to data in-
stances, blue nodes refer to the relational element and black nodes
refer to non-relational elements. The data is manipulated by select-
ing sections in different views.

5 SOLUTION

Our visualization is divided into four views. Out of these, two views
capture the main essence of the project. The first thing a user sees
is the overview view which shows common non-relational elements
and their corresponding data instances through different systems.

Figure 3: Screenshot of Solibri

Figure 4: Structure of ifcXML Schema

Each segment in this view has its own set of data instances in tab-
ular form. This table is generated in the search view along with a
search bar. Putting the value of an identifier in the search bar dis-
plays the graph of the data instance the identifier refers to. This
graph is known as a relationship network and is one of the most im-
portant parts of the visualization. The relationship network displays
how the selected data instance is connected to other data instances
in non-relational elements through relationships described by rela-
tional elements. The analysis table (fig 12) of the visualization gives
a detailed analysis of the data, the tasks involved and the encodings
done.

Figure 5: Relational and Non-relational Elements

5.1 Overview
IfcXML files have a special non-relational element type called ifc-
System defined in them. Data instances in ifcSystem are defined
through attributes such as Name and Type. All data instances in
ifcSystem can be classified into system types such as Mechanical
Exhaust Air. Our dataset has 2 types of Systems: Exhaust Air and
Supply Air. These systems are divided into 5 subsystems: Mechan-
ical Exhaust Air 1, Mechanical Exhaust Air 2, Mechanical Supply
Air 2, Mechanical Supply Air 3, Mechanical Supply Air 4.

Data instances of other non-relational elements such as ifcDis-
tributionPort are connected to particular individual data instances
in ifcSystem through the relational element ifcRelAssignsToGroup.
Each data instance in ifcSystem is connected to multiple data in-
stances of a set of non-relational elements through the relational
element ifcRelAssignsToGroup .Non-relational elements such as
ifcFlowSegment, ifcFlowFitting, ifcBuildingElementProxy, ifcDis-
tributionPort and ifcFlowTerminal are common in all subsystems.

The overview categories these subsystems according to the com-
mon non-relational elements. The Y axis shows the different data
instances of the element ifcSystem defined in the ifcXML file. The
X axis shows all common non-relational elements. Each rectangu-

Figure 6: Different data instances connected through reference
paths.

Figure 7: Colour Gradient

lar segment in the view is colour coded according to the number
of data instances. Fig 8 shows the overview view of the ifcXML
file. Hovering over the rectangles in the view show the number of
data instances that fall under that category. For example, hovering
over the rectangular segment defined by Mechanical Exhaust Air 2
on the Y-axis and B on the X-axis shows a tooltip with the num-
ber 21 on it. This is the number of data instances belonging to this
segment.

5.2 Network
The network view shows the user the relationship network of the
data instances selected by it’s unique identifier. The root node
shows the selected data instance in a non-relational element. Sec-
ond level nodes show the different relational elements that the root
node refers to by it’s idRef. Third level nodes show the non-
relational elements connected to the relational elements in the sec-
ond level. Finally, leaf nodes show the data instances connected
to the root node through idRef’s across the second level and third
level nodes. It is seen in fig 9, the root node is coloured in red and
specifies the identifier whose relationship network is being shown.
Relational elements are shown as blue nodes, non-relational ele-
ments as black nodes and leaf nodes which refer to data instances
connected to the root node are shown in green. Hovering over the
green leaf nodes will show the unique identifier of the data instance.

5.3 Search
The Search view consists of the search bar and a table of data in-
stances. When a segment in the overview is clicked, a table of data
instances belonging to that segment is generated. The table shows

Figure 8: Overview View

Figure 9: Network View

their id’s and names. An id can be selected from this table and en-
tered into the search box. This generates the network view of the
selected data instance. A known id can also be directly inputted into
the search box without finding it from the table to get it’s network
view. The search box and table is shown clearly in fig 10.

5.4 History
The history view gives a list of all identifiers whose networks have
been generated. Identifiers next to each other refer to data instances
which are connected to each other through a relational element. It
also helps the user keep track of all visited data instances. From fig
11, we see that identifiers ‘i2229’ and ‘i140134’ are connected to
each other through a relationship defined by a relational element.

6 IMPLEMENTATION

The main purpose of this project is to help domain experts extract
relationship information from ifcXML files. The system needs to
be easy to install and run. We chose to design a browser-based

Figure 10: Search View

Figure 11: History View

system that just requires the users to run the .html file. The sys-
tem does not need any additional downloads or installations. The
required javascript libraries have been added into the source code
folder. Code for extraction of data from ifcXML files are included
in the project directory too, along with sample parsed data.

6.1 Data
Our original data is in the form of ifcXML files with real world
objects described in terms of elements with different attributes.
Each of these elements have multiple data instances identified with
unique id’s with values for each attribute. The data derived from
these ifcXML files are as follows:

• Matrix for overview where x axis shows non-relational ele-
ments common in all subsystems and y axis shows subsystems
defined in ifcXML file in ifcSystem.

• Each segment in the overview view has a table of data in-
stances identified through unique identifiers.

• Each data instance has it’s corresponding relationship network
saved as a .json file. This file is read by a Javascript file, writ-
ten using D3js which converts the JSON data into a relation-
ship network.

6.2 Tools Used
The visualization is browser based and developed using a combina-
tion of HTML, CSS and Javascript. D3.js cite is Javascript library
that uses digital data to drive the creation and control of dynamic

and interactive graphical forms which run on web browsers cite
wiki. Bootstrap, a web framework was used to create the frame-
work of the visualization. The backend data processing is done
using python. Python has many string processing functions which
makes it an optimum choice to retrieve necessary information from
the ifcXML files.

6.3 Code

The high level structure of the code is as follows:
Project Directory

- index.html
- index-style.css
- onclick.js (separate Javascript function)
- Sample JSON and HTML network data
- d3-tablesort library files

d3 library files
Bootstrap files
Backend data processed in python with python code.

The main code is in index.html which uses the stylesheet index-
style.css. The framework of the visualization is created in this file.
This file also contains the code for the overview, history view and
search bar. The network view for a unique identifier is called from
this file. The table for each segment in the overview is defined in
the d3-tablesort files. The onclick() function calls the d3-tablesort
function to generate the required table for the segment clicked on
the overview.

7 RESULTS

The system visualizes relationship data from ifcXML files. It opens
up with the overview view and the search bar. If the user knows the
identifier of the data instance he is interested in, he can directly
input it into the system to generate its relationship network. Oth-
erwise, the user can use the overview view as a starting point. The
overview view shows all the systems defined in the ifcXML file
through the non-relational element - ifcSystem. Each system has a
set of common non-relational elements with a varying number of
data instances. Hovering over each of the rectangular segments in
the overview gives the user the number of data instances in that
segment. These segments are color coded to show at a glance the
number of data instances it contains. Clicking on any segment dis-
plays a table under the search bar which shows the identifiers and
names of all the data instances in that segment. Entering an identi-
fier in the search bar displays its relationship network. This network
can be explored to see all the non-relational elements and data in-
stances it is connected to through different relational elements. The
history view keeps track of the identifiers visited by the user and
consecutive identifiers refer to data instances connected through a
relationship in the ifcXML file.

Let us take Rob again and discuss how this visualization sys-
tem makes it much easier for him to retrieve the information he
needs. Assuming he knows the id of the data instances that refers
to the flow terminal he is interested in, he inputs that number into
the search bar. Clicking on ‘find’ generates the relationship net-
work of this data instance. The second level blue nodes show all
the relationships the flow terminal is a part of. The relational ele-
ment ifcSystem tells him all the other non-relational elements that
are part of the same system as the flow terminal. He clicks on this
node and it shows him all the non-relational elements. Since he is
only interested in the distribution ports, clicking on the node ifcDis-
tributionNode, will show him a list of names of all the distribution
ports that belong to the same system as the flow terminal. Hovering
over the nodes will give him their id’s.

The visualization was shown to civil engineers who often work
with ifcXML data. They were very excited with the project and

Figure 12: Analysis Table

claimed that the network view was the most helpful part of the vi-
sualization.

8 DISCUSSION AND FUTURE WORK

Our visualization shows relationships between different elements
in an ifcXML file. These relationships are hard to extract from the
ifcXML data as it involves going through many id’s and idRef’s
to find elements connected to each other. The visualization is easy
to use and understand. The design is pleasing to the eye and all
extracted information is appropriately displayed to the user.

There are some limitations to the visualization. The history view
could be improved to display the name of relationships between
visited data instances. In the search view, clicking on an element in
the table should be able to display it’s relationship network directly
without manually inputting it into the search bar. Also another view
can be created which shows properties of a data instance which are
defined with it’s own definition. For example, ‘object type’ is an
attribute defined with a flow terminal’s definition. This information
is not captured in our visualization. While making the decision to
include or not include this information, domain experts told us that
this information is not as interesting as it is easily available.

Currently ifcXMLNetwork only concentrates on the relationship
between elements through their data instances. It would be inter-
esting to see what other information can be extracted from ifcXML
files. IFC viewers like Solibri already deal with the orientation and
spacing of objects in a building, but it might be fascinating to see
what else can be visualized. We understand that not all extractable
information would need to be visualized.

Before the start of the project, we were not aware of the amount
of time and effort it would require to parse the ifcXML files into
smaller JSON files. Even though this step took a lot of time, it
validated our assumption that the process of extracting relationship
information from ifcXML files is indeed very difficult.

9 CONCLUSION

We have presented ifcXMLNetwork which generates a network for
each data instance by finding all the other data instances it is con-
nected through its identifier. The purpose of ifcXMLNetwork is
to make it easier for users to find relationships and connections
in ifcXML files without manually navigating through the data file.
Users can start by viewing the overview and finding which non-
relational elements they are interested in and under which system.
A table of data instances identified by their id’s is generated for ev-
ery rectangular section of the overview. A selected identifier can be
entered into the search bar to display its relationship network. This
network can be explored to find other data instances the identifier
is connected to and through what kind of relationship. A history
view makes it easy for the user to keep track of all the visited data
instances through their id’s.

REFERENCES

[1] Jiemin Zhang. Evaluations on XML Standards for Actual Applica-
tions. 2013

[2] Autodesk Revit. http://www.autodesk.com/products/revit-
family/overview

[3] Building Information Model http://www.autodesk.com/solutions/building-
information-modeling/overview

[4] Industry Foundation Classes http://www.buildingsmart.org/standards/ifc
[5] ifcXML http://www.buildingsmart-tech.org/specifications/ifcxml-

releases
[6] Solibri http://www.solibri.com/products/solibri-model-viewer/
[7] XML Grid http://www.xml-grid.com
[8] Dipper, Stefanie, and Michael Gtze. ”Accessing heterogeneous lin-

guistic data-generic XML-based representation and flexible visualiza-
tion.” Proceedings of the 2nd Language and Technology Conference
2005. 2005.

[9] Ide, Nancy, Patrice Bonhomme, and Laurent Romary. ”An XML-
based Encoding Standard for Linguistic Corpora.” Proceedings of the
Second International Conference on Language Resources and Evalu-
ation. 2000.

[10] Rehm, Georg, Richard Eckart, and Christian Chiarcos. ”An OWL-and
XQuery-based mechanism for the retrieval of linguistic patterns from
XML-corpora.” Corpus 2.3 (2007): 1.

[11] Chiarcos, Christian. ”An ontology of linguistic annotations.” LDV Fo-
rum. Vol. 23. No. 1. 2008.

[12] Stothard, Paul, and David S. Wishart. ”Circular genome visualization
and exploration using CGView.” Bioinformatics 21.4 (2005): 537-
539.

[13] Han, Mira V., and Christian M. Zmasek. ”phyloXML: XML for evo-
lutionary biology and comparative genomics.” BMC bioinformatics
10.1 (2009): 356.

[14] Letunic, Ivica, and Peer Bork. ”Interactive Tree Of Life v2: online
annotation and display of phylogenetic trees made easy.” Nucleic acids
research (2011): gkr201.

[15] Houlding, David Ian. ”Method and system for providing visualiza-
tion of underlying architecture of a software system.” U.S. Patent No.
7,415,697. 19 Aug. 2008.

[16] Swayne, Deborah F., et al. ”GGobi: evolving from XGobi into an ex-
tensible framework for interactive data visualization.”Computational
Statistics and Data Analysis 43.4 (2003): 423-444.

[17] Dong, Jin Song, et al. ”XML-based static type checking and dynamic
visualization for TCOZ.” Formal Methods and Software Engineering.
Springer Berlin Heidelberg, 2002. 311-322.

