
Random Forest Ensemble Visualization
Ken Lau∗

University of British Columbia

Fig. 1. Indented Tree visualization of aggregated ensemble of classification trees. The indented tree shows both the number of feature
variable (red) and class prediction count distributions (orange).

Abstract—The Random forest model for machine learning has become a very popular data mining algorithm due to its high predictive
accuracy as well as simiplicity in execution. The downside is that the model is difficult to interpret. The model consists of a collection
of classification trees. Our proposed visualization aggregates the collection of trees based on the number of feature appearances
at node positions. This derived attribute provides a means of analyzing feature interactions. By using traditional methods such as
variable importance, it is not possible to determine feature interactions. In addition, we propose a method of quantifying the ensemble
of trees based on correlation of class predictions.

1 INTRODUCTION

Table 1. Weather data example. The feature variables include amount
of rain, humidity level, and percentage of sunshine today. The class pre-
diction variable is the weather for tomorrow consisting of rainy, cloudy,
or sunny.

Obs Rain Humidity Sunshine Weather Tomorrow
1 1mm 81% 10% Rainy
2 2mm 85% 40% Cloudy
3 0mm 80% 80% Sunny
4 1mm 81% 20% Cloudy
..

1.1 Machine Learning

A machine learning task involves finding a map between a set of fea-
ture variables and class prediction. Furthermore, the map should be
able to automatically predict any new feature variable data. A simple
example would be predicting the weather for tomorrow given various
atmospheric features. These features include amount of precipitation,
humidity level, and percentage of sunshine. The weather data example
is presented in Table 1.

∗e-mail: ken.lau@stat.ubc.ca

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of
publication xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

A classification tree algorithm is one example of a mapping algo-
rithm between feature variables and class predictions. This algorithm
takes the feature variables as inputs. It recursively partitions the fea-
tures space to a set of regions that maximizes homogeneity of class
predictions. The algorithm outputs decision thresholds as well as or-
dering of feature variables used in the tree. Figure 2 provides an il-
lustration of the classification tree model to solve a machine learning
task. To obtain class predictions for a new feature variable data, sim-
ply traverse down the nodes of the tree until a leaf node is reached.

Rain > 2mm

Humdity > 81%

Tomorrow
rainy

Sunshine > 10%

Tomorrow
cloudy

Tomorrow
sunny

Tomorrow
sunny

Input Feature Variables

Fig. 2. Classification tree example for weather data. The interior nodes
display the feature variable applied as well as threshold chosen for the
split. The leaf nodes represent the class predictions

The random forest model is another example of a map between fea-
ture variables and class predictions. The random forest model is part

of a group of classifiers called ensemble methods. In fact, the model
consists of a collection of classification trees. The model algorithm
bootstraps on the original data set. For each random sample of the
original data, a classification tree model is fit, and a prediction is made
for each tree by traversing down to its leaf node. The final class pre-
diction is the class prediction that appeared the most often [9]. The
algorithm is depicted in Figure 3.

Data
Prediction Random

Sample

Sample
1

Sample
2

Sample
m

.

.

.

Tree 1

Tree 2

Tree m

.

.

.

Majority
Vote

Fig. 3. The random forest model fitting process. The original data is
bootstrapped, and classification trees are fit on each random sample.
Given a new feature input data, prediction is made based on the majority
vote of all class predictions obtained by the classification trees.

1.2 Motivation
The random forest model obtains a considerably higher accuracy pre-
diction over the classification tree. However, interpretation of the
model becomes a difficult task. It is inefficient to analyze every tree
in the model. Obtaining information on feature variables applied at
each node position of the trees provide useful intuition behind feature
importance and feature interaction. In addition, class prediction count
distribution up to nodes traversed may provide useful interpretation
about the final prediction made by a random forest model. Finally,
a method to quantify the diversity across the trees could allow us to
compare between unrelated and related members. The inclusion of
unrelated trees is one reason why the random forest work so well.

2 RELATED WORK

One method of visualizing the entire collection of classification trees
is to use 3D techniques [5]. Relevant information is first extracted
and mapped to an intermediate structure. The information includes
feature variable and threshold at each node position, as well as class
predictions at leaf nodes. The positions of trees are spread across a
2D surface, while the depth of the tree is encoded by spatial position
along the vertical axis.

Our initial idea was to use a consensus tree approach. One paper
uses a partition table which summarizes the frequencies of class pre-
dictions occurring in bootstrap trees. The paper presents several meth-
ods of majority-rule consensus methods [14]. The consensus method,
however, does not incorporate feature variable information at the inte-
rior nodes.

An aggregation approach called PivotGraph is relevant to our pro-
posed visualization [10, 6]. The method derives a new network by
adding up counts from two categorical attribute values. This idea is
incorporated into our proposed visualization by using one categorical
attribute instead of two. We treat the node positions as the categorical
attribute.

A variable importance plot is a very common method of visual-
izing feature variable information from a random forest model. The

Fig. 4. Visualization of a 3D collection of trees generated by a random
forest model.

importance measure for each feature in a classification tree is the in-
formation gain contributed towards maximizing homogeneity of class
predictions at leaf nodes. The number of appearances of a feature
variable is actually proportional to the importance measure of a fea-
ture variable. This is because the algorithm selects the feature at any
specific node position based on maximal information gain. Figure 5
presents a variable importance plot based on 5 feature variables labeled
from m1 to m5.

Fig. 5. Variable importance measures of 5 features using a dot plot
visualization. The features are ordered by importance.

A common method of visualizing the class predictions is through a
proximity measure [9] (page 595). The measure gives an indication of
which observations are close together based on the class predictions
made across the collection of trees. Each random sample has a set
of out-of-bag observations which are excluded due to random sam-
pling. For each tree, predictions are made based on the out-of-bag
observations. The proximity measure of a pair of predictions is in-
creased whenever the two predictions made share the same class. An
NxN proximity matrix is accumulated. The matrix is then represented
in two dimensions by multidimensional-scaling. The goal is to find
a lower-dimensional representation of the data while preserving the
pairwise distances in the higher-dimension as well as possible [9, 6].
Figure 6 presents a multi-dimensional scaling plot based on proximity
measures on out-of-bag observation predictions.

The Curve Boxplot visualization presents a method that quantifies
an ensemble of 2D and 3D curves [4]. The method uses functional
band depth to derive a new attribute. The curve with the highest band
depth is the most central within the ensemble, while curves with lowest

Fig. 6. Multi-dimensional scaling plot based on proximity measures
across observations.

band depth values are identified as outliers. The derived attribute is
displayed as a boxplot. Figure 7 presents an example of the curve
boxplot visualization based on an ensemble of 50 simulated hurricane
tracks. The most central curve is coloured in yellow. The 50% most
central curves are coloured in dark purple.

Fig. 7. Curve Boxplot visualization of an ensemble of 50 simulated hur-
ricane tracks.

3 DATA AND TASK ABSTRACTION

3.1 Data

Data is initially processed in the form of a table similar to the weather
data example presented in Table 1. The rows correspond to the obser-
vations, and the columns correspond to the feature variables and class
prediction variable. The feature variables are all quantitative, and the
class prediction variable is categorical.

The table of data is fed into the random forest model, and the model
outputs an ensemble of classification trees. These classification trees
are binary tree structured and usually range from a depth of 2 to a depth
of 8. Interior nodes of the trees contain the feature variable used at that
node position. Each leaf node contains a specific class prediction. The
examples we use in this paper will consist of 500 trees.

In the remaining sections, we use data based on features engineered
from modulation signals. There are 6 class predictions in total. The
classes correspond to on-off shift keying, binary phase shift keying,
offset quadrature phase shift keying, and binary frequency shift keying
at different levels of carrier frequency. For simplicity, we label these
6 classes with integers from 1 to 6. The feature variables are extracted
from Discrete Fourier Transforms of the digitized form of the signals.
There are 5 features in total. We simply denote these m1,m2, . . . ,m5.

3.2 Task
The first goal is to discover and compare features of high importance
from the fitted model. In this paper, we regard feature importance
as the number of times the feature appears at node positions. This
definition of feature importance is proportional to the usual definition
which uses information gain. In addition to individual feature impor-
tance, we’re also interested in multiple feature level interactions. The
user task includes both locating and browsing for important features
or multiple feature interaction combinations.

The second goal is to obtain more intuition about the final predic-
tions made by the random forest model. The final prediction is made
by the majority vote prediction based on the collection of classifica-
tion trees. The task is to locate and compare tree structures that reveal
different final class predictions made by taking the majority vote of all
classification trees.

The third goal is to summarize the random forest model based on
feature variable importance and class prediction. Common methods to
execute both these tasks are variable importance and multi-dimension
scaling plots as described in Section 2. An additional task is to derive
an attribute that would quantify the ensembles of classification trees.
Subsequently, the ensemble of trees can be further filtered to allow
more flexibility in summarization. Hence, another task would be to
compare classification trees of unrelated and related members.

4 SOLUTION

4.1 Aggregating Feature Appearances
The solution to locating and browsing for feature importance and in-
teractions require a method to visualize the entire ensemble of trees.
For this reason, a new derived attribute is computed. The computation
involves aggregating feature variable appearances at node positions.

1 2

4

1 3 4 5

Tree 1 Tree 2

m1

m2

m1

m1 m2

Tree 3

m2

m4

6 5

1

Fig. 8. A simple example of 3 classification trees. Note that the classi-
fication tree algorithm in random forests are usually grown deeper than
the ones in this example.

Depth Feature Appearance

root m1 2

Depth Parent Feature Left Split Right Split

2 m1 m2 1 1

Depth Parent Feature Left Split Right Split

2 m1 m1 1 0

Depth Feature Appearance

root m2 1

Depth Parent Feature Left Split Right Split

2 m2 m4 1 0

Fig. 9. Derived feature variable appearances at each depth of tree.
The derived attribute is encoded with red colour saturation. Feature
variables at each depth are ordered based on number of appearances.

For each tree, we determine the features used at each depth, and also
whether the split was on the left or right. The first depth corresponds
to the root node, so the left or right split is irrelevant. We then compute
a cumulative sum total of the number of feature appearances across all

Depth Feature Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

root m1 2 1 1 2 1 0

Depth Parent Feature Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

2 m1 m2 1 1 0 1 1 0

Depth Parent Feature Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

2 m1 m1 1 0 1 0 0 0

Depth Feature Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

root m2 1 0 0 0 1 1

Depth Feature Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

root m4 0 0 0 0 1 1

Fig. 10. Derived class count distribution for nodes traversed down so far.
The derived attribute is encoded with orange colour saturation. Feature
variables at each depth are ordered based on number of appearances.

the trees at corresponding depths. Figure 9 presents the derived feature
appearance attribute based on the 3 classification trees example. The
derived attribute is encoded with red colour saturation. The features
are ordered based on the sum of the left and right split appearances at
the specified depth.

From the classification trees example, the m1 feature occurs twice
at the root depth. Therefore, the number of appearances is 2 as shown
on the first bar of Figure 9. Similarly, m2 occurs once at the root
depth, therefore it gets a value of 1 as shown on the fourth bar down.
Moreover, feature m2 occurs twice at a depth of 2. Once in tree 1 and
once in tree 2. In tree 1, m2 was split on the left. In tree 2, m2 was split
on the right. These values are shown on the second bar down. The
other feature variables are computed similarly.

The reason for choosing red colour saturation is to provide enough
contrast with the text. Arguably, other colours would suffice such as
yellow, green, and teal. There were no other reasons to choosing red.
Originally, we wanted to order the features by name. However, order-
ing by the derived attribute would be more useful for analysis.

4.2 Aggregating Class Predictions

Another derived attribute is the class count distribution for nodes tra-
versed down the tree so far. At the root depth, all class predictions
for a feature variable are included. Let us use the 3 classification trees
example of Figure 8. To determine the derived value for m1 at the root
depth, we count up all class predictions obtained given the root node is
m1. Classes 1 and 4 appear twice. While classes 2, 3, 5, and 6 appear
once. To compute the class count distribution of m2 given parent m1,
we count up the class predictions up to node traversed. In the same
example, classes 1, 2, 4, and 5 are predicted once given the split m2
and m1. The class count distribution for node traversals for m1 and m1
has class 1 and 3 occurring once.

4.3 Indented Aggregate Tree

The proposed visualization is based on the indented tree implemen-
tation by Mike Bostock. In addition, the nodes of the indented tree
contains the encoding for both the feature appearance attribute and
class count distribution. The indented aggregate tree is shown in Fig-
ure 14. The feature appearance attribute is displayed in red, and the
class count distribution is displayed in orange.

4.4 Tree Diversity

One method of quantifying the ensemble of classification trees is to
use the hamann similary measure [1, 2]. The measure is computed for
every combination of two trees in the ensemble. This hamann similar-
ity measure is modified for multiple classes. The hamann measure in
Gatner’s paper uses binary classes [1]. Using Figure 11, the hamann

Correct Incorrect

Correct a1 0

Incorrect 0 d1

Correct Incorrect

Correct 0 b2

Incorrect c2 d2
Tree 1

Tree 2

Tree 1

Tree 2

Predicted Same Class Predicted Different Class

Fig. 11. Contingency tables for two classification trees separated by
same and different prediction.

similarity measure for two trees is computed as follows,

H(tree1, tree2) =
(a1 +d1)− (b2 + c2 +d2)

a1 +d1 +b2 + c2 +d2
(1)

The hamann similarity measure for a single tree is the average pairwise
measure with the remaining trees. The average hamann measure for
tree 1 is expressed below where B is the total number of trees.

H1 =
1

B−1 ∑
j: j 6=1

H(tree1, tree j) (2)

The set of derived measures for the ensemble of trees are presented as
a histogram in Figure 12. The unrelated trees are identified as the trees
with the smallest values of hamann similarity. Furthermore, the trees
can be filtered to allow comparison of unrelated or related members
within the ensemble of trees. Figure 13 presents an example of filtering
by hamann similarity using a slider widget. The proportion of trees
filtered is reflected by the black region filled in the histogram.

Fig. 12. Histogram of derived similarity measure for each tree in the
ensemble.

From the filtered trees, variable importance and multidimensional
scaling plots can be plotted. The prediction error is also computed.

5 IMPLEMENTATION

5.1 Aggregated Tree
5.1.1 Model Fitting
Random forests were fit using Scikit-learn from a library in Python [7].
The function RandomForestClassifier takes a table of data consisting
of feature variables and one class prediciton variable as input. The
output is a collection of classification tree objects. Another parameter
is the number of trees which usually range from 500 to 1000.

5.1.2 Extract Fitted Models to JSON
A classification tree object is expressed as a nested dictionary. A dic-
tionary in Python is synonymous to a hash table. The top level of
the nested dictionary corresponds to the root node. At each level,

Fig. 13. The ensemble of trees can be filtered based on the derived
hamann measures, and the proportion filtered is reflected in the his-
togram by the area filled out in black.

there is a key corresponding to the name of the feature variable used.
There is also a key that maps to its children nodes. If the node is
a leaf node, then the class count distribution is given instead of the
feature variable. The goal is to recurse down each of the classifica-
tion trees, and extract just the relevant information described above.
An example of the clean classification tree nested dictionary structure
is shown below. We output this format into a JSON file. We repeat
the process for each classification tree. We used code from a blog
post as a base to extract information from a single classification tree
https://gist.github.com/pprett/3813537. We modified the code to clean
and extract relevant information for aggregation. An example of the
nested dictionary structure is shown below.

{
feature:m1,
type:split,
children:[{

type:leaf,
{

class1:5, class2:10, class3:0, class4:0,
class5:5, class6:30

}
},
{
feature:m2,
type:split,
children:[...]

}
]}

5.1.3 Permutate All Feature Node Positions
We created an empty tree by permuting all combinations of feature
variables at each depth. Let us call this empty tree as the aggregated
tree. The nodes of the aggregated tree will store the number of feature
variable appearances and the class count distributions. If we have 5
features, we obtain a 5-ary tree. The aggregated tree uses a nested
dictionary in Python. The root node of this nested dictionary only
indicates where to begin aggregation. That is, the aggregation of the
classification trees begin at depth 2. The example below only uses
1 feature variable and a class prediction variable of 3 classes. The
purpose of this example is to show that all the values are set 0 initially.
This aggregated tree with all 0 values is exported to a JSON file.

{
name:start,
children:[{

feature:m1,
appearance:0,
classCounts:
{

class1:0, class2:0, class3:0
},
children:[

feature:m1,
left-split:0,
right-split:0,
classCounts:
{
class1:0, class2:0, class3:0

}
]}

]}

5.1.4 Aggregating Feature Appearances
The aggregate tree JSON file is loaded back into Python as a nested
dictionary. We then iterate through the list of classification tree JSON
files. We recurse down each classification tree JSON data while up-
dating the aggregate tree with feature appearances at node positions.
For example, if the aggregate tree contains m1 at its root node, then
we add 1 to the aggregate tree at the first feature variable of m1. The
updated structure from the example above looks like the following,

{
name:start,
children:[{

feature:m1,
appearance:1,
classCounts:
{

class1:0, class2:0, class3:0
},
children:[

feature:m1,
left-split:0,
right-split:0,
classCounts:
{
class1:0, class2:0, class3:0

}
]}

]}

Notice that the appearance key at feature variable m1 has a value of 1
now.

5.1.5 Aggregating Class Count Distributions
There is an intermediate step that computes the class count distribution
for nodes traversed so far. To compute the class count distribution
at a specific node traversed so far, we need to percolate up the class
predictions from the leaf nodes. The class predictions are percolated
up to the node traversed so far. This process is repeated for all node
positions.

The class count distributions are updated similarly to the feature
appearances. Instead of adding a value of 1, the values from the class
count distributions are cumulatively added onto the class count dis-
tributions of the aggregated tree. For example, if the class count dis-
tribution of m1 for class 1, class 2, and class 3 were 20, 50, and 10
respectively, then the nested dictionary would be updated as follows,

{
name:start,
children:[{

feature:m1,
appearance:1,
classCounts:
{

class1:20, class2:50, class3:10
},
children:[

feature:m1,
left-split:0,
right-split:0,
classCounts:
{

class1:0, class2:0, class3:0
}

]}
]}

5.1.6 Ordering the Aggregated Tree

After the aggregated tree is updated from all the classification trees.
We recurse down the aggregated tree and re-order the nodes at each
depth by the number of feature appearances based on the sum of the
left and right split components. If there are no left or right splits, the
number of appearances are used.

5.1.7 Filtering the Aggregated Tree

After the aggregated tree is re-ordered, the tree is filtered on any nodes
with 0 for both the derived attributes. The aggregated tree is then
exported to a JSON file.

5.1.8 Domain Scales for D3

The maximum value of the derived feature appearance attribute is
computed by traversing down the aggregated tree. The resulting do-
main scale is [0,max(f eatureAppearance)]. The domain scale for
class count distribution attribute is computed similarly.

5.1.9 Other Libraries Used in Python

The numpy library in Python was used for manipulation of arrays. The
pandas library was used for manipulation of data frames. A data frame
is synonymous to a table. The json library was used for handling JSON
files.

5.2 D3

5.2.1 Indented Tree

The visualization is based on Mike Bostock’s indented tree. The im-
plementation is found at http://bl.ocks.org/mbostock/1093025.

5.2.2 Feature Appearance Attribute

The derived feature appearance attribute is encoded with red colour
saturation. A linear scale colour map is created by mapping
the domain scale to the range. The range varies from white
to red. I obtained the code to build the colour map from
this post, http://synthesis.sbecker.net/articles/2012/07/16/learning-d3-
part-6-scales-colors. Rectangular boxes are used to display the derived
attributes. The colour is filled in according to the linear scale colour
map. The attribute value is displayed in the middle of the box. Labels
are displayed within the boxes. If the node corresponds to a root node
from the classification tree, then it is labeled as ’root’. Otherwise, the
labels correspond to ’left-split’ or ’right-split’.

5.2.3 Class Count Distribution Attribute

The derived class count distribution attribute is encoded with orange
colour saturation. We used the domain scale stored in the JSON file
containing the aggregated tree. A linear scale colour map is created
similar to the one for feature appearance. The range varies from white
to orange. Rectangular boxes are used to display the derived attributes.
There are 6 boxes in total. One for each class. The boxes are filled in
with colour corresponding to the linear scale colour map. The de-
rived attribute value is displayed in the middle of the box. Labels are
displayed within the boxes. The labels correspond to each of the 6
classes.

5.3 R and Shiny
An app was built for quantifying the ensemble of trees using
R shiny [8]. The app allows the user to fit a random forest
model which uses the randomForest library [3]. We used Matthew
Leonawicz’s implementation of variable importance and multidi-
mensional scaling plots. Leonawicz’s Random Forest app can be
found at http://blog.snap.uaf.edu/2014/03/25/r-shiny-randomforest-
with-base-graphics-and-ggplot2/. The hamann similarity derived at-
tribute is computed with base R functions mostly. The plyr library was
used to allow split-apply-combine algorithms to be applied on data
frames [13]. The background theme uses one of the default themes
from the Twitter Bootstrap library.

5.3.1 Other Libraries Used
The reshape2 library was used to re-shape data frames to easily allow
the correct format to be used in ggplot2 [11]. The plotting functions
of variable importance and multi-dimensional scaling plots used the
ggplot2 library [12].

6 RESULTS

6.1 Indented Aggregate Tree
Initially, the indented aggregate tree visualization displays the number
of feature appearance at root nodes across the ensemble of classifica-
tion trees. The initial visualization is shown in Figure 14. The figure
reveals that feature m5 appeared at the root nodes of 172 classifica-
tion trees. Whereas, feature m2 only appeared at root nodes of 4 trees.
This suggests that m5 has greater individual feature importance than
m2. We could click on the nodes at the current depth to display the
next depth. For example, clicking on m5 of Figure 14 will result in the
image shown in Figure 15. The second image reveals two way inter-
actions. More importantly, there are more than 40 classification trees
where m3 feature were on the left split of feature m5. This suggests
that smaller values of m5 favours splits of m3 on the left much more
than on the right. Although, the indented aggregate tree visualization
easily reveals information at the first and second level of the tree, it
requires more effort to search through deeper levels of the tree. More-
over, the traditional feature variable importance plot has the advantage
of summarizing feature importance based on all levels of the trees for
each feature. Figure 16 shows multiple-level feature interactions.

From Figure 15, the class count distribution appears to be fairly
uniform for all features at the root node split. However, splitting by
m3 given m5 reveals higher frequency predictions for classes 3, 4, and
6. This suggests that classification trees with splits m3 given m5 con-
tribute towards class predictions of classes 3, 4, and 6 in the majority
vote final prediction.

6.1.1 Scale
The algorithm currently does not scale well. With 5 feature variables,
the maximum depth allowed for the indented aggregate tree is 8. This
limitation is due to an out-of-memory issue. The problem occurs in
the step of the algorithm that builds the initial aggregate tree by per-
muting all feature node positions. This step should be removed. The
nodes should be appended on the aggregate tree as we iterate through
the classification trees. Nevertheless, the algorithm runs quickly for
1000 trees with depths less than 7. A simple computational benchmark
for 4 different settings of number of trees and tree depth is shown in
Figure 17.

6.2 Tree Diversity App
In the R Shiny app, we can enter the number of trees to fit the random
forest model. The minimum number of trees is 100. The ’Fit Random
Forest’ button fits a random forest model, and computes the average
pairwise hamann similarity measure for each tree in the ensemble. The
slider filters the trees. The filtering is highlighted in a histogram as
shown in Figure 13. Furthermore, we could plot between 2 common
visualizations of random forest models. These 2 visualizations are the
variable importance and multidimensional scaling plots as shown in
Figures 5 and 6.

Fig. 14. Indented Tree visualization of aggregated ensemble of classification trees. This screen shot shows feature appearances at root nodes of
classification trees. In addition class count distributions are shown after splitting by corresponding root node.

Fig. 15. Indented Tree visualization of aggregated ensemble of classification trees. This screen shot shows two-way interaction between m5 and
the other 4 features.

Number of Trees Depth Time

200 7 59 sec

800 3 10 sec

1500 3 15 sec

1500 6 22 sec

Fig. 17. Computational benchmark for the aggregation process based
on number of depths and trees to generate the aggregate tree.

7 DISCUSSION AND FUTURE WORK

7.1 Strengths

The indented aggregate tree provides a way to visualize the most im-
portant information from an ensemble of classification trees in a fea-
sible and efficient manner. The visualization provides both feature
importance and two-way feature interactions.

The strength of the R shiny app is the ability to allow the user to
filter trees to enable comparison between the most unrelated or related
members in the ensemble of trees. The commonly used variable im-
portance and multidimensional scaling plots are static, and only show
a summary of feature importances and class predictions.

7.2 Weaknesses

Browsing multiple-feature interactions is still difficult and time-
consuming. It is a difficult task to find interesting four-way feature
interactions. Not to mention, the task becomes more difficult as we
increase the number of feature variables. The visualization should
provide a legend that labels the feature and class prediction variables.
Otherwise, a button should be provided that allows the user to switch
between the labels to be on or off. The visualization should allow the
user to link highlight a particular path down the indented aggregate

Fig. 18. Shiny app configurations.

tree. The aggregation process also does not scale very well. There is
an out-of-memory issue for an aggregate tree with depth greater than
8.

The problem with the R shiny app is also in scale. However, the
computational complexity is affected based on the number of trees
instead of the number of feature variables. The current approach com-
putes the hamann similarity measure B2 times, where B is the number
of trees. Whereas, it should only compute

(B
2
)

times, because that is
the number of feature combination pairs. Fitting more than 400 trees
is not recommended.

Fig. 16. Indented Tree visualization of aggregated ensemble of classification trees. This screen shot shows multiple-level interactions.

7.3 Lessons Learned

We learned about the process of taking a complex data such as an en-
semble of trees, and apply aggregation methods to build a simple vi-
sualization that preserves relevant information from the trees. We also
learned about how different combinations of visual encodings could
impact the visualization, such as colour mixed with spatial position.
We learned about methods of quantifying and filtering data based on a
derived attribute.

7.4 Future Work

The aggregation algorithm could definitely be improved. An inter-
face should be built for the indented aggregate tree to provide more
intractability. The interface should allow the user to load in data in
the form of a table with multiple feature variables and one class pre-
diction variable. There should be a button that fits the random forest
model which automatically produces the indented aggregate tree. The
visualization should allow link highlighting of paths along the tree.

8 CONCLUSIONS

We introduced a visualization that aggregates over an ensemble of
classification trees. The visualization is based on the indented tree
built in D3. The nodes of the indented tree contain total number of
feature appearances at node positions across all classification trees.
This information is relevant in determining feature importance and
two-way interactions. The visualization also provides class prediction
count distributions. In the R shiny app, we derived a diversity measure
score for each tree in the ensemble. We could then filter the trees by
diversity measure, and produce variable importance and multidimen-
sional scaling plots.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Tamara Munzner for providing helpful
comments and guidance.

REFERENCES

[1] E. Gatnar. A diversity measure for tree-based classifier ensembles. In
Data Analysis and Decision Support, pages 30–38. Springer, 2005.

[2] L. Kuncheva and C. Whitaker. Measures of diversity in classifier ensem-
bles and their relationship with the ensemble accuracy. Machine learning,
51(2):181–207, 2003.

[3] A. Liaw and M. Wiener. Classification and regression by randomforest.
R News, 2(3):18–22, 2002.

[4] R. W. M. Mirzargar and R. Kirby. Curve boxplot: Generalization of
boxplot for ensembles of curves. 2014.

[5] D. Z. M. Yang, H. Xu and H. Chen. Visualizing the random forest by 3d
techniques. Internet of Things, pages 639–645, 2012.

[6] T. Munzner. Visualization Analysis and Design. A K Peters Visualization
Series. CRC Press., 2014.

[7] F. Pedregosa et al. Scikit-learn: Machine learning in python. The Jour. of
Mach. Learn. Res., 12:2825–2830, 2011.

[8] RStudio and Inc. shiny: Web Application Framework for R, 2014. R
package version 0.10.2.1.

[9] R. T. T. Hastie and J. Friedman. The elements of statistical learning,
volume 2. Springer, 2009.

[10] M. Wattenberg. Visual exploration of multivariate graphs. In Proceedings
of the SIGCHI conference on Human Factors in computing systems, pages
811–819. ACM, 2006.

[11] H. Wickham. Reshaping data with the reshape package. Jour. of Stat.
Soft., 21(12):1–20, 2007.

[12] H. Wickham. ggplot2: elegant graphics for data analysis. Springer New
York, 2009.

[13] H. Wickham. The split-apply-combine strategy for data analysis. Jour. of
Stat. Soft., 40(1):1–29, 2011.

[14] M. Wilkinson. Majority-rule reduced consensus trees and their use in
bootstrapping. Molec. Bio. and Evo., 13(3):437–444, 1996.

