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1 Domain and Task Description

It is usually not difficult to visualize an entire classification tree in a single
image without overwhelming the user with visual clutter. Interpretation
becomes a problem when we are required to visualize thousands of trees at
once. Random forests have become a very common data mining algorithm
due to advantages of high accuracy and ability to handle large amounts of
input variables. A random forest generates thousands of classification trees
through bootstrap and randomized subset feature selection, and makes a
prediction from the input based on the majority vote of all the trees. Inter-
pretation becomes very difficult since it is infeasible to analyze every single
tree individually. However, a single tree is easy to interpret and contains a
lot of useful information. For example, the label of an interior node repre-
sents the input variable used in partitioning the feature space into binary
groups that optimizes prediction of the same target value. The leaf nodes
correspond to the target values with the most occurrences within the par-
ticular group. This project will focus on the construction of a visualization
system that accommodates the analysis of thousands of trees generated by
random forests.

2 Data

We will be working with signal data coming from 6 different modulations.
These represent the classes we want to predict. These modulations con-
sist of on-off shift keying (OOK), binary phase shift keying (BPSK), offset
quadrature phase shift keying (OQPSK), binary frequency shift keying at
a carrier frequency of 868.3 MHz (BFSKA), binary frequency shift keying
at 868.95 MHz (BFSKB), and binary frequency shift keying between 868.03
MHz and 868.66 MHz (BFSKR2). These modulations appear as leaf nodes
in the tree. Furthermore, we extract a total of 144 quantitative features
(input variables) for each received signal. These features appear as labels of
the tree. Each classification tree generated from the random forest is stored
as a tree structure in a JSON file. Figure 1 presents the structure of a sin-
gle classification tree. We will analyze a collection of around one thousand
binary trees.
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Figure 1: A single classification tree. Labels above each interior node repre-
sents split-point for a particular input variable. Leaf nodes represent mod-
ulation prediction labeled as 1 to 6.

3 Personal Expertise

This project should tie in with my MSc. project. I have been working with
tree-based methods on signal modulation data mostly during the summer.
I have some experience in applications of random forests. However, this will
be my first time in implementing an application for visualizations.

4 Proposed Infovis Solution

This project aims to construct a consensus tree using the collection of trees
generated by a random forest, and computing a weighted average of majority
votes and information gain. The consensus tree would provide a useful sum-
mary of all the trees built from the random forest. The visualization would
allow users to analyze and interpret input variables that are used across all
the trees, thereby providing guidance in model selection and detection of
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useful interactions of variables. The consensus tree would be grown hori-
zontally from left to right. Each child node would be ordered using spatial
encoding from top to bottom based on the weighted average of majority
votes and information gain. We could collapse or expand nodes by clicking
on them. The selection of one node would highlight all other nodes with
the same input variable. Hovering over a node would display number of
appearances and average information gain across all trees with the same
structure up to corresponding depth. Majority vote and information gain
of each input variable would also be computed across all generated trees.
Dot plots with scores ordered by spatial encoding from highest score (top)
to lowest score (bottom).

Idiom Proposed Vis Solution

What: Data Collection of Trees.

What: Derived Consensus Tree computed by weighted score between
majority votes and info gain based on all the trees.

What: Derived Marginal majority vote and information gain values
for every subset of consensus tree.

What: Derived Summary statistics of average majority vote and
information gain for each input variable

How: Encode Consensus tree horizontal layout with collapsible nodes.
Selection highlighting of same nodes, and hovering over
nodes to display detailed information.

How: Encode Dot plot with spatially encoded summary statistics
for each input variable.

Table 1: Abstractions for proposed vis solution

5 Scenario of Use and Illustrations

From the left panel of the main screen, the user selects one of consensus
tree, importance measures, or partial dependence options to analyze. For
example, if the consensus tree option is selected, then a sankey diagram dis-
playing the consensus tree will be brought forth for the user to analyze. The
user can navigate the whole tree by using the sliders on the right and bottom
of the screen. If the user clicks on a node, then all corresponding nodes with
the same input variable will be highlighted with red. Moreover, hovering
over a node displays detailed information on marginal majority vote and
information gain score. If the user selects importance measure option from
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the left panel, then dot plots with scores from majority vote and information
gain across all nodes will be brought forth to the screen. Selecting an input
variable from one of the dot plots will highlight all corresponding input vari-
ables from the other dot plots. If the user selects partial dependence from
the left panel, then partial dependence plots for pairs of input variables will
be brought forth. The user can select 2 input variables for each of the axis
as well as the response class of interest.
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6 Implementation Approach

The computations to construct the consensus tree will be carried out in R
or Python. The final consensus tree with all the data at each node will be
stored in a JSON file. I’m planning on using sankey diagrams in R along
with shiny to display the consensus tree. The other option is d3, which
allows more flexibility such as collapsible and linked selection of nodes along
with other features. The dot plots will be done with ggplot2 in R.

7 Milestones and Schedule

• Nov. 5th - Build a small random forest example with 100 trees and
5 input variables. Extract each tree with info at each node in clean
JSON format.

• Nov. 7th - Design weighted combination of majority vote and info
gain to construct consensus tree.

• Nov. 12th - Construct JSON format of consensus tree.

• Nov. 14th - Status update. Continue to construct JSON format of
consensus tree.

• Nov. 21st - Start constructing shiny app. Build sankey diagram
using consensus tree.

• Dec. 1st - Complete sankey diagrams and dot plots in shiny app.
Begin Scaling to large random forest.

• Dec. 5th - Finish Scaling to large random forest.

• Dec. 7th - Attempt to build consensus tree with d3.

• Dec. 9th - Begin write-up and presentation.

• Dec. 15th - Complete write-up.

8 Previous Work

The most common method to interpret the random forest model is to analyze
a partial dependence plot [3]. It displays the effects of one input variable on
the response accounting for the average effects of all other input variables.
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Analysis of interaction effects is possible if we encode 2 input variables along
the x and y axis. Contour lines are drawn to depict levels corresponding to
response value. A problem with partial dependence plots is the limitation of
low-dimensional views. In this project, we will analyze up to 144 features.
Analyzing every pair of variables would be time consuming. An extension
to partial dependence plots are CARTscans which captures the bootstrap
calibration [4]. Another method to visualize and interpret random forests is
through a 3D visualization of the trees [2]. Information for every classifica-
tion tree is first extracted and mapped to an intermediate structure. Spatial
positions of every node within the trees are then calculated and depicted on
the screen.
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