
EdgeLap: Identifying and discovering features from overlapping
sets in networks

Jessica Wong∗

Abstract—Microbes are single celled organisms that can be found everywhere in the world from the air to the soil on the ground.
Generally speaking, microbes will be found in extremely close proximity to other species of microbes due to mutual beneficial rela-
tionships where one species produces something that another species requires for survival; these groups of microbes are called a
community. A widespread question in the microbiological community is trying to identify what microbial interactions are commonly
found or not found throughout different communities. To address this question, EdgeLap was developed. EdgeLap is a tool that
creates visualizations to help its end users, microbiologists, easily identify and discover common microbial interactions. Although
EdgeLap is specifically designed with microbial communities in mind, it can be applied to many other biological networks or even
social networks where examining the edges in a network is a question of interest.

1 INTRODUCTION

Microbes are single celled organisms that can be found on virtually
every surface of the earth. Generally speaking, microbes are found in
groups made up of different kinds of single celled organisms and this
group of microbes is called a community. The concept of microbial
species is difficult to assess experimentally so microbes are grouped
into operational taxonomic units (OTUs) based on their DNA. In the
rest of this paper, microbial species will be referred to as an OTU.

Mediating the flow of matter and energy throughout the soil envi-
ronment is a plethora of microbial diversity often known only through
their molecular signatures. Owing to both the complexity of the soil
environment, and the abundance of uncultivated soil microorganisms,
the ecological rules guiding microbial community dynamics are dif-
ficult to determine. Uncovering potential relationships between mi-
crobial community members requires identification of microbial in-
teractions. Co-occurrence network analyses can be used to identify
potential microbial relationships; however, comparing these networks
is a difficult task.

EdgeLap is a tool designed to help microbiologists identify and dis-
cover common OTU interactions that are found across many different
communities. It not only helps visualize OTU interactions that are
common to all of the different communities—it helps visualize OTU
interactions that commonly appear in a subset of the communities be-
ing examined. Whereas most set comparison tools and techniques
focus on visualizing the common items between sets, EdgeLap fo-
cuses on the relationships between items in a set rather than the items
themselves. EdgeLap also allows its users to differentiate between the
types of edges that are displayed. Users can choose to examine just
positively or negatively co-occurring OTUs or they can loosen the re-
strictions to examine OTUs that interact in different communities but
may not necessarily have the same type of interaction within those
communities. In this paper, EdgeLap works with the Long-term Soil
profile (LTSP) dataset, one of the world’s largest coordinated research
networks that addresses basic and applied scientific questions related
to forest management [12]. However, there is no reason that EdgeLap
could not be applied to other data domains and problems where the
relationship between items is to be investigated.

2 RELATED WORK

Studying microbial co-occurrence networks is not a new problem and
there have been many previous attempts to come up with tools to solve
this problems [8, 7]. However, the focus in these efforts seem to be
on based on computing the co-occurrence numbers and then finding

∗email: jhmwong@cs.ubc.ca

an appropriate graph or scatterplot or Euler diagram to show the in-
formation rather than come up with a tool to help identify and dis-
cover co-occurrence networks. There have been both commercial and
non-commercial tools produced for investigating sets and networks
but these tools do not necessarily deal with the problem of identify-
ing common relationships between items that occur across multiple
sets. While the relationships between items could be considered as
items themselves thus reducing EdgeLap’s problem to be another set
comparison problem, EdgeLap’s ability to show common edges be-
tween network sets at various granularities is an extension of the set
comparison problem.

2.1 Visualizing networks

Current tools used in the biological data domain focus on displaying a
network [1, 2, 3] but does not have any set comparison functionality.
These tools excel at displaying an individual network as they were
not designed to show set intersections, they cannot solve the problem
EdgeLap is trying to tackle. It is due to the existence of these tools that
EdgeLap does not focus on displaying individual networks; rather, it
is focused on more creating a visualization that will allow its users to
make comparisons between different sets.

2.2 Set Intersection

Visualizing sets and set intersections is a well studied problem in the
information visualization field [6]. Some tools in this area focus on
comparing or displaying similar elements between sets [10, 13, 4]
while others focus on showing different types of information in a set
[9]. The tools closest to EdgeLap are Radial Sets [5] since Radial Sets
also focus on displaying common items in overlapping sets.EdgeLap
is actually adapted from Radial Sets but due to the need to show ex-
tra information about each network, Radial Sets does not completely
satisfy EdgeLap’s requirements. Therefore, EdgeLap extended and
adapted the Radial Sets idiom.

The other set visualization techniques have more emphasis on
showing a variety of information from the different sets in a more
spread out format [9, 10] which did not suit EdgeLap as it really only
had two large pieces of information to show. Arguably, EdgeLap could
be adapted to use a visualization encoding closer to Domino [9] and
UpSet [10] but the end users preferred the look of Radial Sets as op-
posed to Domino or UpSet. OnSet [13] does deal with visualization
relationships in a network but it deals with binary data and the dataset
used in this paper was seen as non-binary due to the different possible
types of interaction between element types hence OnSets idioms and
encodings were not adapted into EdgeLap.



3 TASK AND DATA ABSTRACTION

3.1 Dataset
EdgeLap uses a dataset that was derived from over 700 DNA samples
of microbial communities harvested from soil samples obtained six
different geographical locations across Canada and the United States.
Each site was divided into four forest plots where microbial DNA was
extracted from soil using four different DNA harvesting methods: un-
managed, mild, moderate, and heavy. The extracted DNA was then
sequenced and used to identify the OTUs present within each sam-
ple. In order to identify potential microbial interactions, co-occurrence
networks were constructed for: all samples, each geographic location,
each site within each geographic location, and each forest treatment
within each geographic location resulting in a total of 52 networks.
The network visualization and calculation of network properties has
been completed outside of the scope of this project.

Each soil microbial community network is represented in the form
of two files. The first file lists what OTUs are present in a sample
and these OTUs would be considered as the data items or nodes in a
network. The second file lists which OTU is correlated with another
OTU (there would be the links between nodes in a network); these
co-occurrences can be positive or negative. Essentially, a community
can be thought of as a network with the OTUs as nodes and the OTU
interactions as edges. The networks are undirected and asymmetric
and there is no guarantee on the size of the networks in relation to each
other. It is also possible for networks to have no edges in common with
each other. EdgeLap works with the second type of file.

In this dataset, networks have thousands of nodes. On average, a
network has around 60 500 edges but can range from approximately
30 edges to 291 000 edges. It is not expected that the networks share
nodes; instead, it is expected that the networks will share edges. The
total number of edges in all of the networks of this dataset is 605479.

3.2 Task Abstraction
The basic task EdgeLap is designed to accomplish is to identify and
locate common links across any combination of networks in a dataset.
EdgeLap can visualize not just edges that appear in all the networks
the user wants to compare; it can also visualize sets of links that are
common to a subset of the networks currently being examined. For
example, if the user wants to compare four networks, EdgeLap will
help visualize the common edges found between networks: 1 and 2;
1 and 3; 1 and 4; 2 and 3; 2 and 4; 3 and 4; 1, 2, and 3; 1, 2 and 4;
2, 3, and 4; and 1, 2, 3, and 4. Basically, for n networks being ex-
amined, EdgeLap can provide a way to visualize 2n combination of
networks. The goal is to generate a hypothesis about the types, and
number of co-occurrences found between OTUs in different commu-
nities. In summary, the main tasks of EdgeLap are:

1. Discover features, and similarities/differences between networks

2. Explore the distribution of shared links between networks

3. Identify features in the grouping of links, and similarities be-
tween networks

4. Compare networks with each other

4 SOLUTION AND DESIGN JUSTIFICATION

4.1 Network Glyph
To get a general sense of how many edges in a network are actually
in common with the other networks it is currently being compared to
in the visualization, a histogram is used inside the network mark. The
top bar in the histogram represents the total number of edges present in
the network; the yellow portion displays edges that are not shared with
any other networks while the white portion displays the total number
of edges in that network that are shared. The next bar after shows the
number of edges that are shared with exactly one network. The bar
after that shows the number of edges that are shared with exactly two
networks. This pattern continues until the last histogram bar.

Table 1. Summary of encoding idioms used in EdgeLap

Data Attribute Mark
Network Glyph

Quantity/distribution of
links in a network • Length (histogram inside net-

work glyph describes quan-
tity/distribution of links using
length)

• Position on a common scale

• Colour

Links in overlap

• Line mark

• Connection

Link Attributes

• Saturation

• Glyph

• Colour

Fig. 1. The network glyph helps provide information to the user regard-
ing how similar a community is to the other communities being currently
compared. The yellow portion of the histogram bars denote how many
edges that particular network shares with the other networks it is cur-
rently being compared with. The top of the histogram starts by showing
how many edges that network shares with 0 other networks. The next
bar down shows how many edges that network shares with exactly 1
other network. This pattern repeats for the rest of the histogram bars.

4.2 Circle Glyph
In order to help users differentiate between which sets are participat-
ing in multi-network relationships (any relationships involving more
than two networks), lines connect a circle glyph to the networks it rep-
resents an overlapping set for. This encoding was chosen to help users
pick out which networks were involved in a specific multi-network re-
lationship as well as to help users gain a preliminary intuition of which
networks might share many interactions without having to create an-
other radial set to investigate further. The circle encoding can be one
of six possibilities shown in figure 2

4.3 Varying saturation of the colours of lines connecting
networks

For m networks, there are 2m relationships each network can partici-
pate in. Since lines denote relationships between networks, the natural
consequence is that the number of lines present inside the visualiza-
tion is very large and hence, hard to decipher. Colour saturation was
used to help users differentiate between lines that depicted edges that
were shared between different numbers of networks. Since the users
were more interested in cases where more networks share a common



(a) (b) (c) (d) (e) (f)

Fig. 2. The circle glyphs will represent the relationship between the
cardinality of the set of positive co-occurrences and the cardinality of
the set of negative co-occurrences. (a) There are less positive co-
occurrences than negative co-occurrences, (b) there are an equal num-
ber of positive and negative co-occurrences, (c) there are more positive
co-occurrences than negative co-occurrences, (d) there are only posi-
tive co-occurrences, (e) there are only negative co-occurrences, and (f)
when the co-occurrences do not need to be of the same type and the
more important question is if there even is any co-occurrences between
OTUs.

edge, lines that denote these relationships use more saturated colours.
Likewise, sets that depict edges shared between a smaller number of
networks are represented by lines that use less saturated colours as
shown in figure 3. Thickness was not considered as an encoding due
to the sheer number of lines that could result from the radial set; thick-
ness would quickly become indiscernible given enough lines. Colour
saturation was used rather than using different hues in order to abide
by the “get it right in black and white principle” [11]. The idea of
using different colour hues that were of different saturations was dis-
carded as I felt that it would put too much emphasis on the different
sets of lines as opposed to the circle glyphs. As the circle glyphs are
of more importance as compared to the lines that are connecting to it,
we wanted the extra emphasis of colour placed on the circle glyphs.
Also, using different colour hues for the lines along with the coloured
circle glyphs seemed too overwhelming.

Fig. 3. The lines that connect from a network to the same circle glyph
are considered as one set of lines. Depending on the number of lines in
the set, lines are of different colour saturations.

4.4 Changes from the proposal
4.4.1 Not displaying the network level view
The network level view was dropped from EdgeLap due to the under-
estimation of the number of common OTU interactions that would be
found in each overlapping set. Originally it was thought that there
would be around 6-10 common OTU interactions found but it was
found that there were some test cases where there were around 1500
common OTU interactions. Placing 1500 nodes in a network graph
where each node is in a spot that would make the edges of the network
not cross over it too many times is a non-trivial task.

The network level view feature was replaced with displaying the
textual information of the items in the overlapping set in a new table.
While having a long list of items without any ability to filter or sort

the list is not very ideal, it was the best compromise as the end users
of EdgeLap already had tools to visualize a single network and the
network level view was not an essential requirement. The“Export to
CSV” feature in section 6.1.3 can be used by the end users to export a
list of items in that overlapping set which can then be input in the end
users’ own tool to visualize a network. As the end user can still obtain
a visualization of the network, dropping this feature was not seen as
decreasing the usefulness of EdgeLap.

4.4.2 Orientation of network glyphs

Initially, the network glyphs were designed to be rotated differently
depending on where they were located. However, after some consider-
ation about the difficulty of comparing the histograms inside the net-
work glyph, it was decided that the network glyphs should be aligned
in the same direction.

4.4.3 Circles glyphs are all the same size

The proposal originally planned to use different circle sizes to indicate
the size of the overlapping sets—overlapping sets with higher cardinal-
ity would have larger circles. However, generally speaking, the more
networks that were involved with an overlapping set, the smaller the
set became. However, with the number of lines present in the middle
of the visualization already partially obscuring circles, it was decided
that having a variety of circle sizes would just add extra time for the
user when it came to trying to search for what was needed. As the main
function of the circle glyphs is to provide a quick tidbit of information
to the user regarding the specific overlapping set, it was decided that
the glyph itself served that purpose well enough without having to in-
clude a size encoding as well.

4.4.4 Dropping the total edges histogram bar from the network
mark

Originally, EdgeLap’s design had an extra bar in each of the his-
tograms located in the network marks. The extra bar was meant to
represent the total number of edges that were present in the visualiza-
tion and was initially designed in hopes of being able to show how
much or how little a network contributed to the overall edge sharing;
it was also a quick way for the user to tell relative sizes of networks
as compared to each other. However, this approach became imprac-
tical due to the histogram quickly becoming unreadable once three or
more networks were compared. The histogram bar that represented the
total number of edges was big enough to dwarf over the bars that rep-
resented the individual network and those bars became a single line
essentially rendering the histogram useless. Multiplying each of the
histogram bars by a constant helped increase the size of the bars but
the ability to compare the size of a network to the size of the sum of
all the networks disappeared as the difference in bar length no longer
gave a good visual of the difference in network sizes. Therefore, the
histogram bar representing the total number of edges was taken out as
it was not serving its intended purpose.

4.4.5 All lines connecting to circle glyphs

The proposal initially designed the line marks to only have a circle
glyph if the lines connected more than two networks. However, for
uniformity issues and to avoid having the lines be unnoticed due to a
high number of lines in the visualization, it was decided that all line
marks connecting networks should have a circle glyph.

4.4.6 Loading screen

The idea of a loading screen was never initially discussed as the perfor-
mance concerns were not significant at that time. However, after the
visualization was created, it was noticed that it was not evident when
a new visualization was generated if there was already a preexisting
proposal on the screen. In order to make EdgeLap more usable for the
user, a loading screen was added to ensure that it was clear when a
new visualization had been drawn.



4.4.7 Larger histogram showing up on a new tab instead of
overlay

The larger histogram view as described in section 6.1.4 was originally
created as an overlay view that would appear over the visualization in
EdgeLap’s main screen. However, having the large histogram as an
overlay made it hard for users to refer back to the histogram as they
would have to close the histogram before being able to click another
network glyph to investigate another histogram. Having the large his-
togram appear in another tab is easier as the user can open up many
different histogram tabs to flip back and forth histograms.

5 MEDIUM-LEVEL IMPLEMENTATION DISCUSSION

EdgeLap is comprised of Java, PHP, HTML, CSS, JavaScript, and Pro-
cessing code. It is a web based tool that works with Amazon RDS (or
any relational database). The code is broken up into two sections: 1)
Java, and 2) PHP/HTML/JavaScript/Processing. Aside from the li-
braries (section 5.1), all other code files are specifically written for
EdgeLap.

5.1 Libraries used
Four libraries were used in this project:

• jQuery

• Processing

• MySQLConnector

• c3p0-0.9.5-pre10

jQuery is used to handle event callbacks with informa-
tion from the datastore and interfacing between EdgeLap’s
HTML/JavaScript/Processing code and the PHP code working with
the datastore. Processing is a library needed for the visualization por-
tion of EdgeLap. The MySQLConnector, and c3p0-0.9.5-pre10 li-
braries are used in the Java code so that the code can work with the
datastore.

5.2 Data Management
MySQL was the original preferred datastore option as opposed to
Amazon RDS. However, using MySQL was a struggle as there were
a series of installation problems that eventually cumulated in the re-
formatting of the primary development machine. Even after MySQL
was setup, it was discovered that the primary development machine
could not handle the level of database insertion needed for EdgeLap’s
dataset. Amazon RDS was chosen at this point due to the ease of set-
ting up the database and because it could easily handle a large dataset
without crashing. Thread management was implemented in order to
avoid the MySQL crash from database insertion that was experienced
earlier. Queries were batched in groups of 100 and a pool of worker
threads was responsible for inserting the batches into the database. The
database connection pool was also managed in order to help speed up
interactions with the database in a multi-threaded environment. Es-
sentially all this was done to make the inserting into the remote AWS
database possible, since without it, the latency would in the order of
several hours.

5.3 Visualization Creation
HTML, CSS, JavaScript, Processing, and PHP was used to create the
actual visualization. The main screen of EdgeLap consists of a Pro-
cessing sketch embedded into the HTML page. PHP was used to
query the datastore and the results of that query would be passed back
through PHP to JavaScript. The JavaScript portion would then com-
municate with the Processing code in order for the visualization to be
displayed.

A large part of the struggle with creating EdgeLap came from un-
familiarity of the languages used for the project, the lack of proper
debugging functionality in the Processing IDE, and the general lack
of information on the Internet about the integration of Processing into

HTML. A lot of the functions that would normally work in a Process-
ing sketch did not work properly once it was embedded in a HTML
page. It seems that Processing sketches embedded in a webpage are
exported as a Java applet which meant a lot of the Processing specific
functions did not work as intended.

A semi-difficult part of the project was constructing the SQL
queries and checking the validity of the answers. Part of the problem
stemmed from the fact that the LTSP dataset provided had an error in
it when it was generated. A corrected version of the dataset was un-
able to be obtained for the project as the generation of the corrected
version of the dataset took three months. Checking the results of the
SQL queries often took a long time since there were times when the
dataset had to be checked for consistency before the validity of the
answer could be confirmed.

Another difficult part of the project was exporting to SVG. Since
Processing by itself does not have a default export canvas to SVG
feature. I had to import a library from Gliffy Inc which enabled the
creation of a separate canvas context. After creating a mock canvas
context, I then had to recreate the same image in the mock canvas as
the one that is shown on screen.

6 RESULTS

6.1 Scenarios of Use
6.1.1 To Begin
To begin, the user would select the files that he/she wanted to examine
from the list of networks on the right (figure 5). The list of networks
populated would be determined from what files have been loaded in
the database. After making the selections, the user would have to click
the“Draw Visualization” button located on the bottom of the list of
files in order to draw the visualization. Between the time that ”Draw
Visualization” was clicked and the visualization appears, there will
be a loading screen that appears while the information is being fetched
from the database (figure 6); the loading screen will disappear once the
visualization has rendered. The user can select what types of edges
he/she wishes to include in the visualization from the radio buttons
underneath the list of networks.

Fig. 4. This is what EdgeLap looks like when it is first launched in a web
browser. The list of networks available to use for a visualization appears
on the right.

If none of the three options are selected, then the visualization that
is generated will use the white circle glyphs (figure 7). It indicates that
the sets displayed have OTU interactions where two OTUs have some
sort of relationship in all of the networks that the glyph is connected to,
but the OTUs may not have the same type of interactions throughout
the different networks.

If the ”Unidirectional Relationships Only” option is selected, the
blue/red circle glyphs (option a, b, and c in figure 2) will be used in
the visualization (figure 8). This visualization would show OTUs that
have the same type of relationship in all the networks connected to the
circle glyph.



Fig. 5. A user can select 2-7 networks to generate a visualization for. In
this case, the user has selected four networks.

Fig. 6. While the visualization is rendering, a loading screen will appear.

Fig. 8. If the user has selected the ”Unidirectional relationships only”
option when generating the visualization, the circle glyphs that appear
in the visualization will be varied depending on the types of edges found
in each intersecting set.

If the ”Copresence Relationships Only” option is selected, the visu-
alization would use the blue circle glyphs to display sets with copres-
ence edges (i.e., positively co-occurrence edges) (figure 9).

Fig. 7. If the user has not selected a specific type of edge that he/she
is looking for, the visualization will display all overlapping sets that have
two OTUs with some relationship in all the related networks. For exam-
ple, if there are four networks, this visualization would show OTUs that
have some relationship to each other even though they might have not
a positive correlation through all the networks being examined.

Fig. 9. If the user has specifically selected to look at only copresence re-
lationships, the circle glyphs that appear on the visualization will reflect
that.

If the ”Mutually Exclusive Relationships Only” option is selected,
the visualization would use the red circle glyphs to display sets with
mutually exclusive edges (i.e., negatively correlated edges) (figure 10).

Fig. 10. If the user has specifically selected to look at only mutually
exclusive relationships, the circle glyphs that appear on the visualization
will reflect that.

6.1.2 Examining the Overlapping Set
The main window (the one of the left) will display the visualization
based on the networks the user has specified. If the user wishes to



examine the elements that are present in a specific overlapping set fur-
ther, he/she can click on the circle glyph representing that overlapping
set to have a list of the elements in set appear in another tab.

Fig. 11. By clicking on a circle glyph, a new tab will appear with the list
of all the edges that are in that set.

6.1.3 Exporting to CSV
If the user has performed the usage scenario described in 6.1.2, then
the user will have the option of exporting that information to a CSV
file for future use. Simply click the ”Export to CSV” button located at
the top of the list of elements (see figure 11) to download the file.

Fig. 12. The CSV file exported from the ”Export to CSV” button shown
in figure 11 will contain the same information as what is displayed on
the screen in figure 11.

6.1.4 Examining Network Attributes
A secondary piece of information available to the user are general
numbers about how many edges are shared with the different net-
works involved in current visualization (e.g., how many links does the
network share with other networks in the visualization, how many of
those links are only shared with exactly one network, exactly two net-
works, so on and so forth). If the user wishes to see a larger version of
the histogram with labels for each bar, he/she can click on the network
mark to have a larger labeled version of the histogram appear in a new
tab.

Fig. 13. A larger and labelled version of the histogram that the user can
see if he/she clicks on the network mark.

6.1.5 Exporting to SVG
If the user wishes to export the visualization show on the left hand side
of EdgeLap’s main screen (see figure 4), he/she can click on the ”To
SVG” button. An SVG of the visualization will then be downloaded
(figure 14).

Fig. 14. The user has the option of downloading the visualization on
screen as an SVG file. The information captured in the SVG file is the
same as what is in the visualization but it looks slightly different from
what is shown in the main screen of EdgeLap. This figure depicts what
the SVG file looks like.

6.1.6 Does the interface solve the problem?

EdgeLap’s interface allows the end users to solve the problem they
were interested in, namely, what common edges are found in a set and
all of its vary subsets of networks. Particularly, I think the loading
screen was a good idea as it helped indicate to the user when the vi-
sualization was done loading. Without the loading screen, it was often
unclear when a visualization had finished loading. A user would have
to watch the screen for a quick flicker on the visualization to realize
that a new one had been drawn in place. The flicker was often easy to
miss and resulted in the user having to either a) wait for an extended
amount of time to ensure that a new visualization had been drawn or
b) click on the ”Draw Visualization” button again and carefully watch
for the flicker. With the loading screen, it is obvious when the visual-
ization is being generated verses not knowing if the flicker had already
come and gone.

I think the interface could be improved by either considering an-
other idiom to replace the circle glyphs currently representing overlap-
ping sets or finding a better method to draw all the circle glyphs and
its corresponding lines. With an increased number of networks com-
pared, the middle of the visualization can get cluttered with various
lines and circle glyphs. The lines often are very close or slightly over-
lap each other which can cause readability issues. It would be worth
either further investigating an idiom like LineSets [4] or implementing
a filtering option to try and reduce the number of lines shown at any
one time. Idioms like LineSets [4] could help due to the way it shows
intersections between sets without the use of connecting lines but due
to the sheer number of combinations that is required to be examined,
using the LineSet [4] idiom would not be very practical.

7 DISCUSSION

7.1 Strengths and weaknesses
A definite strength of EdgeLap is the scale of data it can show. Show-
ing 2n overlapping sets for n networks is not an easy task and although
the current solution is not perfect, it does manage to show all the over-
lapping sets to the user. However, the tradeoff for being able to show
a large amount of data is performance. While it is understandable that
the performance is slow due to the number of searches it has to perform
for each overlapping set and the size of the dataset, it does not change
the fact that it can take two to four seconds for the visualization to be
generated. Given that were is a loading screen to help the user’s ex-
perience with waiting for a visualization to be generated, performance
is a weakness but there does not seem to be a good way around the
performance issue without having the visualization itself changed.



Another strength of EdgeLap is that it uses fairly similar visual en-
codings and idioms for the different polarity of edges. The user does
not have to specifically readapt his/her expectations or method of read-
ing the visualization even though he/she might be visualizing different
things. Once the general idioms and encodings of EdgeLap has been
explained, any visualization generated by it can be easily read by users.

As mentioned in section 6.1.6, the amount of lines in the middle
of EdgeLap’s visualizations can be highly cluttered. Also, the colour
saturation scales for the lines connecting to the circle glyphs could be
slightly altered to produce more of a obvious difference. Lines con-
necting a different number of networks are of different saturations; the
more networks a set of lines is connecting to, the higher the line satu-
ration. The colour saturation for the different types of lines was cho-
sen to be numerically equidistance from each other. However, upon
closer examination, it seems that it is harder to distinguish between
the lighter saturations as opposed to the darker saturations. It would
be a good idea to play around with the values some more to see if a
better saturation balance could be reached.

7.2 Lessons learned
I think spending more time upfront with the design was a very good
idea as it allowed for a relatively smoother path when it came to imple-
menting. I spent a lot of time in the proposal stage getting to know the
domain and the application’s specific purpose before designing the vi-
sualization which resulted in EdgeLap’s design not really significantly
differing from the proposal stage to the final finished product. This
definitely was an advantage towards implementing this project as I
spent less time on communicating back and forth with the end users on
various changes that were needed and more time on actual implemen-
tation. Compared to the other teams, I also started the implementation
stage later as I had spent some extra time after the proposal finalizing
final design questions and ideas with EdgeLap’s end clients. However,
I found this to my definite advantage as once I started the implementa-
tion stage, I did not have many design changes such that I had to erase
and redo portions of the project repeatedly.

Something else I learned was to investigate the problems with the
integration of various languages prior to choosing the development
language. When I first researched about the basic languages needed
for the project, I only looked at whether or not a language could do
what I needed it to do. For example, I looked to see if it was possible
to export a Processing sketch into a SVG file without looking at much
specifics about the whole process. However, when it came time to
actually implement the “Export to SVG” functionality, I realized it
was much harder than I thought. The same idea was also true for the
idea of using Processing in a web page—I knew it was possible but I
did not know how much more trouble it caused. In the future, I will
definitely look more closely at the mechanics and ease of how to do
something and research more into the various known integration issues
before further pursuing that path.

I also learned a lot about working with medium sized data. Truth-
fully speaking, in terms of big datasets, a 605 000 line dataset is not
big at all but it is definitely of a much bigger scale than what I have
worked with previously. Getting around the barrier of what it takes
to insert and work with a dataset of this size was fairly rewarding to
me. I got to look at different ways to design and improve the underly-
ing database in order to try and speed up performance and while I did
not end up using these designs because of their marginal gain to the
project, I did definitely learn a lot about different things a DBA could
consider when designing a database.

8 FUTURE WORK

If there was more time, I would definitely implement a filtering option
for the user so that the user could choose how many sets appear on
the visualization. As the number of networks to compare increases,
the number of sets examined quickly increases. Even with comparing
2 to 7 networks, the number of intersecting sets that need to be con-
sidered quickly explode from 4 (22) to 128 (27). This leads to many
lines and glyphs being draw in the middle of the networks and defi-
nitely make it much harder to tell which lines are connecting to which

glyphs. Lines are also sometimes drawn over glyphs which causes it
be obscured from the user. While the glyphs are not totally covered by
lines and invisible, it definitely adds another layer of complexity for
the user when trying to investigate different overlapping sets. It would
be useful to have a filtering option so that the user can choose what
types of overlapping sets he/she wants to look at in that point in time.
For example, the user could choose to only examine overlapping sets
for any three of the n networks being currently examined or the user
could examine overlapping sets for any two, three or four of the n net-
works being examined. I feel that this would help declutter the space
in the middle of the networks as well as help the user quickly pick out
which circles are of relevance to them.

Another thing I would implement would be hovering over a circle
glyph would cause all the lines that the glyph is associated from to be
highlighted. The increase in the number of lines often makes it hard
to tell which lines are associated to which glyphs and having the as-
sociated lines highlighted while hovering over a circle glyph would
give the user context when looking at a certain intersecting set. Also,
having some summary information appear (e.g., the number of items
in the set) while hovering over a circle glyph would be ideal as it can
provide the user with some preliminary information about the inter-
secting set without having the user click and switch tabs.

The algorithm to draw lines connecting networks to circle glyphs
could also be improved by trying to implement some logic to avoid
having lines drawn too close to each other. The way the lines are
currently being drawn essentially depend on what networks they are
trying to connect. However, this leads to a lot of lines being drawn
closely together. For example, if there were lines connecting networks
1, 2, and 3 and lines connecting networks 1, 2, 3, and 4, the lines can
be very close together—especially the parts of the lines that are closer
to the network marks. This also can make it the visualization hard to
read. EdgeLap could try to take some lessons LineSets [4] as it deals
with a very similar problem.

I would also like to improve performance. Part of the current per-
formance issue is due to the number of overlapping sets it has to check
(2n for n networks examined). I think this problem could be solved by
either implementing some sort of caching mechanism or by modifying
the visualization in order to cut down on the number of queries needed
to generate one mechanism. With the current implementation, every
time a visualization needs to be generated, EdgeLap issues a whole
new set of queries. If we had a situation where the user wants to gen-
erate a visualization by adding in the edge filtering option (figure 8, 9,
10), we should be able to reuse the current data that has already been
fetched to further filter it. The visualization could also be modified
in order to cut down on that number to improve performance. If the
filtering option was implemented, the performance of EdgeLap would
probably increase along with it as there would be less overlapping sets
to calculate data for.

Another interesting addition to EdgeLap could be to find some way
to visualize or display how many edges in a network are positive in
one network and negative in another. I think the circle size could be
an interesting idiom to try and use with this kind of question.

9 CONCLUSION

EdgeLap is a visualization tool used to identify and discover features
in overlapping networks. A variety of idioms and encodings including
glyphs, colour, colour saturation, aligned positioning, and length were
used in the tool. There is functionality to export both the visualiza-
tion and the underlying information in textual form, which helps make
EdgeLap a standalone application able to be easily setup and used. Al-
though further work could be done to enhance EdgeLap, EdgeLap is
successful in its task to visualize common edges that appear in a set
and subsets of networks and has accomplished the four tasks in 3.2
that it aimed to achieve.

REFERENCES

[1] Cytoscape. http://www.cytoscape.org/what_is_
cytoscape.html. Accessed: 2014-10-30.

[2] Gephi. http://gephi.github.io/. Accessed: 2014-10-30.

http://www.cytoscape.org/what_is_cytoscape.html
http://www.cytoscape.org/what_is_cytoscape.html
http://gephi.github.io/


[3] Hive plotter. http://www.hiveplot.net/. Accessed: 2014-10-
30.

[4] B. Alper, N. H. Riche, G. Ramos, and M. Czerwinski. Design study of
linesets, a novel set visualization technique. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2259–2267, 2011.

[5] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial sets: Interac-
tive visual analysis of large overlapping sets. Visualization and Computer
Graphics, IEEE Transactions on, 19(12):2496–2505, 2013.

[6] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. Visualizing sets and set-typed data: State-of-the-art and fu-
ture challenges. 2014.

[7] A. Barberán, S. T. Bates, E. O. Casamayor, and N. Fierer. Using network
analysis to explore co-occurrence patterns in soil microbial communities.
The ISME journal, 6(2):343–351, 2011.

[8] K. Faust and J. Raes. Microbial interactions: from networks to models.
Nature Reviews Microbiology, 10(8):538–550, 2012.

[9] S. Gratzl, N. Gehlenborg, A. Lex, H. Pfister, and M. Streit. Domino:
Extracting, comparing, and manipulating subsets across multiple tabular
datasets. IEEE Transactions on Visualization and Computer Graphics
(InfoVis ’14), 2014. to appear.

[10] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. Upset:
Visualization of intersecting sets. 2014.

[11] T. Munzner. A K Peters Visualization Series. CRC Press, 2014.
[12] R. F. Powers, D. A. Scott, F. G. Sanchez, R. A. Voldseth, D. Page-

Dumroese, J. D. Elioff, and D. M. Stone. The north american long-term
soil productivity experiment: Findings from the first decade of research.
Forest Ecology and Management, 220(13):31 – 50, 2005.

[13] R. Sadana, T. Major, A. Dove, and J. Stasko. Onset: A visualization
technique for large-scale binary set data. 2014.

http://www.hiveplot.net/

	Introduction
	Related Work
	Visualizing networks
	Set Intersection

	Task and Data Abstraction
	Dataset
	Task Abstraction

	Solution and Design Justification
	Network Glyph
	Circle Glyph
	Varying saturation of the colours of lines connecting networks
	Changes from the proposal
	Not displaying the network level view
	Orientation of network glyphs
	Circles glyphs are all the same size
	Dropping the total edges histogram bar from the network mark
	All lines connecting to circle glyphs
	Loading screen
	Larger histogram showing up on a new tab instead of overlay


	Medium-level implementation discussion
	Libraries used
	Data Management
	Visualization Creation

	Results
	Scenarios of Use
	To Begin
	Examining the Overlapping Set
	Exporting to CSV
	Examining Network Attributes
	Exporting to SVG
	Does the interface solve the problem?


	Discussion
	Strengths and weaknesses
	Lessons learned

	Future Work
	Conclusion

