

- Microbes are everywhere and commonly work together to survive
- A group of microbes working together is called a community
- Common task is to identify microbes present in a community and try to find patterns in their interactions

• You can identify microbes in many different ways





<sup>11/8/2012, 4:24</sup> PM; Size: 1024x768; Exp: 164ms; Bin: 1x1; Modif: No; Disp BWG: (177, 14838, 2.15) File: n/a (unsaved)





- Soil samples were obtained from 18 different sites
- Each site had 4 different methods of harvesting DNA
- Microbes were identified using DNA

- Each community has microbes and interactions between them
- Interactions can be positively correlated (copresence) or negatively correlated (mutually exclusive)
- Total of 605479 interactions

#### Task Abstraction

- Identify and locate common microbial interactions that happen across different networks
- Goal: to generate a hypothesis about the types, and number of correlations found between microbes in different communities

# Complications

- We want to know common interactions that can occur in any combination of networks examined
  - 2<sup>n</sup> combinations if there are n networks selected
- Also need to differentiate between positive/ negative edges

## EdgeLap

- Inspired from Radial Sets
- Created from a mix of Java, HTML, PHP, JavaScript, and Processing
- Finds common interactions between 2-7 networks

# Step One: Data

- Data needed to be processed and stored into a database
- Stored in Amazon RDS
- Sorted each interaction by name
- Created an index on the table to help speed up queries



# Network Glyph

 Network glyphs are meant to show information about how many edges are shared between 0 to n networks

| E | R_BAC_SBS_OM0 |     | ~ |
|---|---------------|-----|---|
| ( | 2360          | 614 |   |
| U | 614           |     | J |
|   |               |     |   |

 Meant as secondary information about the network





•Used to show properties of set we are looking at

- •Blue = copresence (positive correlation)
- •Red = mutual exclusion (negative correlation)
- •White doesn't take the type of interaction into account



| Iocalhost/~jhmwong/CPSC547/Processing/ |                                                                                                                                                                                                                                             |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Networks     B_R_BAC_SBS_LOG     B_R_BAC_SBS_OM0     B_R_BAC_SBS_OM1     B_R_BAC_SBS_OM2     B_R_BAC_SBS_OM2     B_R_BAC_SBS_TOP     R_BAC_IDF_OL     R_BAC_IDF_OM1     R_BAC_IDF_OM1     R_BAC_IDF_OM1     R_BAC_IDF_OM2     R_BAC_IDF_OM3 |
|                                        | Draw Visualization<br>Undirectional Relationships Only<br>Copresence Relationships Only                                                                                                                                                     |
|                                        | Mutually Exclusive Relationships Only Clear Selection To SVC                                                                                                                                                                                |

### Future Work

- Filtering option
- Hovering over the circle glyphs will highlight associated lines, display summary information
- Better method to draw lines to avoid too much overlap
- Improve performance



• Questions?