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ABSTRACT 
Information, as a representation of the “real world”, is required to 
faithfully demonstrate the relevant aspects of the application 
domain. To describe the structure of a domain, various fields have 
employed ontological models. Visualization of the said ontologies 
can improve tasks such as understanding of implicit knowledge as 
well as information alignment. The present work provides a 
survey on the methodologies proposed for visualizing ontologies 
in the literature, and also performs a statistical synthesis (i.e. 
meta-analysis) to quantitatively review some of the empirical 
studies that focused on the impact of visualization enhancement.  

Keywords: Ontology, visualization, survey, meta-analysis. 

Index Terms:	  K.6.1 [Management of Computing and Information 
Systems] 
1 INTRODUCTION 
Ontology is a “branch of philosophy [that] deals with the order 
and structure of reality in the broadest sense possible” (Angeles 
1981). Considering that information systems are representations 
of applications, practitioners as well as researchers in information 
sciences have used ontologies as guidance to describe the order 
and structure of domains in order to develop more faithful 
representations of reality (Wand and Weber 1989, Shanks et al. 
2008, Recker et al. 2011). Domain ontology is defined as a set of 
concepts, the relationship between concepts, what can happen, and 
what can exist - the axioms (Wand and Weber 2002).  

Diverse fields such as biomedical informatics, systems 
engineering, and semantic web1 have developed ontologies to 
represent the semantic meta-data within their fields. One of the 
largest ontologies available is the ontology of the DBpedia 
project, which is a manually created cross-domain ontology with 
over 4.2 million resources (things) in the ontology2. 

Visualizations of ontologies have been proposed in prior 
research (Mutton and Golbeck 2003, Lanzenberger et al. 2010, 
Bera et al. 2011). Visualization in general is created to augment 
human capabilities in performing a task (Munzner 2014). Some of 
the tasks that can benefit from visualizing ontologies could be 
implicit knowledge identification in a domain (e.g. Andronis et al. 
2010; Bera et al. 2011), integration of data sources (e.g. Granitzer 
et al. 2010; Parsons and Wand 2003), and understanding a domain 
in general (e.g. Mutton and Golbeck 2003).  

The objective of this paper is twofold: (1) Survey the existing 
literature focusing on visualization of domain ontologies. And (2) 
synthesize the data from similar empirical experiments evaluating 
different ontological visualizations (i.e. meta-analysis). 

                                                                    
1	  http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library 
Accessed on 27/10/2014	  
2	  http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library 
Accessed on 27/10/2014	  

2 ONTOLOGY LANGUAGE AND BASELINE REPRESENTATION 
The standard language for developing ontologies, according to the 
World Wide Web Consortium (W3C) is the Web Ontology 
Language or OWL (http://www.w3.org/2001/sw/wiki/OWL). The 
most widely used tool creating and modifying ontologies is an 
open source program called Protégé (Gasevic et al. 2009),  – 
developed and maintained at Stanford University3. The ontologies 
created in Protégé are represented as indented trees (or lists), 
similar to the structure of files in Windows Explorer (or Finder in 
Mac OSX). In OWL, it is assumed that the building block of the 
world is the class called “Thing”; this set includes all instances in 
the relevant universe (http://www.w3.org/2001/sw/wiki/OWL). 
The other classes in the domain ontology are defined based on the 
properties that they posses. All the classes in the ontology are 
assumed to be subclasses of “Thing”. Figure 1 illustrates a 
hierarchy of a sample ontology that models a pizzeria, while 
Figure 2 shows the properties in this domain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
Figure 2. Properties in the pizza ontology 

3 SURVEY OF VISUALIZATION METHODS IN THE LITERATURE 
As part of research for the presented work, three literature surveys 
on visualizing ontologies were identified. The first, and most 

                                                                    
3	  http://protégé.stanford.edu accessed on 26/10/2014 

Figure 1. Classes of the pizza ontology in Protégé 
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influential4, survey was done by Katifori et al. in 2007. They 
presented methods tailored for visualizing ontologies, as well as 
other techniques (for different contexts) that could also be used to 
display ontologies. They also performed an emprical user study 
(Katifori et al. 2006), by testing four different visualizations – all 
of which were plug-ins in Protégé. Two of the methods were 
based on indented-lists (hierarchies), and the other two were node-
link based. The experimental task was investigating evolution of 
entities in an ontology over time. They found that users of Protégé 
class browser (indented lists) perform this task with higher 
accuracy. 
    Another survey was done by Lanzenberger et al. in 2010. Their 
purpose was to identify techniques that could be used for the task 
of ontology alignment, or in other words, reconciling the meta-
data from various sources (i.e. interoperability). Their focus was 
mostly on graph-based visualization tools, whether 2D or 3D. At 
the end, they concluded that a compelling method that utilizes the 
screen real estate appropriately, while being intuitive to users, is 
yet to be developed.  
    The third survey (Granitzer et al. 2010) also focused on the task 
of interoperability. They studied various Protégé plug-ins that 
enabled reconciliation of two or more distinct ontologies. Similar 
to the previous survey, after discussing the strengths and 
weaknesses of the current approaches, they stated that the field 
lacks a comprehensive technique for ontology alignment. They 
described the appropriate approach as a semi-automatic technique 
that would utilize human judgment and at the same time, handles 
complex and evolving ontologies.   

For the purpose of current work, 21 papers were identified that 
had investigated methods to visualize ontologies. One of the 
selection criteria for these papers was their exclusion in the 
surveys done by Katifori et al. (2007), Lanzenberger et al. (2010), 
and Granitzer et al. (2010). The publication date of the collected 
papers was in the period of 2003-2014, with the majority being 
published after 2011. Out of this pool of 21 papers, 11 of them 
had done some sort of empirical user evaluation. These 
evaluations ranged from lab experiments to interviews and 
protocol analyses.  

The review in this work groups the studies based on similarity 
of methods and presents them in the following sections. In each 
group of similar visualizations, the methods are discussed by the 
chronological order of publication. 

3.1 Graph-based Methods 

3.1.1 Spring Embedded / Force-Directed 
Mutton and Golbeck (2003) used a spring embedding algorithm to 
draw the ontology as a graph. This visualization is similar to the 
force-directed placement visualization (Munzner 2014; Brandes 
2001), in which each class in the ontology is considered a node, 
while the links of the graph represent the relationship between 
classes in the ontology – that is whether a class is subclass of 
another, sibling class, or completely disjoint from the other class 
(declared by a closure axiom in OWL).  
    This algorithm considers visualizing an ontology similar to 
simulating a force system: the nodes act as charges particles, thus 
the repulsive forces between the nodes in the graph imposes a 
layout where similar nodes end up being placed closer to each 
other. This visualization is most useful for the task of identifying 
similar concepts in a domain ontology, as similar concepts will be 
found in a cluster within the spring embedded graph. Figure 3 
illustrates such visualization of an ontology. 
 

                                                                    
4	  Cited 293 times based on Google Scholar data, as of 01/12/2014	  

 
Figure 3. Spring embedded graph visualization of ontologies 

Vercruysse et al. (2012) proposed a similar visualization (i.e. 
force-directed graphs) for ontologies. Their data source was 
biomedical ontologies available on the Ontology Lookup Service 
(OLS) database. The task that they investigated in their paper was 
just browsing ontological graphs by the users (as uses of 
ontologies in biomedical research are diverse, and this paper did 
not want to limit the scope to one specific task). A force-field 
graph visualization grants the users flexibility in the way they 
view the ontologies (and sub-ontologies), as the graphs can be 
reorganized smoothly, and enables moving the concepts “towards 
more optimal positions” (Vercruisse et al. 2012, p. 4) in the 
canvas, hence improving the exploration of bio-ontologies.   

The idiom of spring-embedded graphs is summarized in table 1. 
This analysis framework is borrowed from (Munzner 2014). 

Table 1. Spring-embedded Graphs Summary 

Idiom Spring-embedded graphs  
What: Data Ontological data as graphs 
What: 
Derived 

Classes as nodes, relationship between classes as 
links 

Why: Task Identification of similar concepts and browsing 
ontologies 

Scale Limited (up to 50 nodes at a time) 
  
In a more recent paper, Fu et al. (2014) empirically evaluated 

spring-embedded graph representations versus indented lists using 
eye-tracking method with 36 subjects. Their justification for their 
evaluation was that “a lack of scientific evaluations of existing 
ontology visualization techniques could be potentially damning to 
the advancement of this field as a whole, as we may fail to 
recognize and adopt good designs, or to identify and reject bad 
practices” (p. 1). 

Fu et al. (2014) found that indented lists are more efficient in 
tasks involving information search – defined by the authors as 
tasks “where [subjects] only need to sample a small amount of 
objects to complete” (p. 7), while information processing tasks – 
interpretation of information that are measured by duration of eye 
fixation – are done more efficiently using graph based 
representations. They also measured accuracy (i.e. error rate) and 
completion time. Completion time was faster for indented lists, 
however accuracy was not significantly different between the two 
visualization methods. 

3.1.2 Clinical Outcome Search Space (COSS) 
As mentioned earlier, one of the tasks that could be facilitated by 
visualizing ontologies, is identification of implicit knowledge 
within a domain. Andronis et al. (2011), used ontologies in 
biomedical domain for the task of drug repurposing (DR). They 
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posited that instead of researching and developing new drugs, 
biomedical practitioners could utilize ontologies of existing drugs, 
and test different hypotheses regarding their effects. The premise 
of this study is that complete and comprehensive ontologies of 
drugs are available to researchers. They developed a mining 
technique for drug repurposing called Clinical Outcome Search 
Space (COSS), which acts as a semantic reasoner; COSS analyses 
ontologies and establishes similarities between various drugs and 
the symptoms they treat. Using graph-based techniques with 
colour coding, they visualize the drugs that could be repurposed. 
It should be noted that COSS is not an ontology visualization 
technique, but a visualization of inferences made on ontologies. 
Figure 4 shows the relations detected between two genes within 
an ontology.  
 
 

 
Figure 4. COSS graph-based visualization 

3.1.3 Graph formation based on Information Richness 
Motta et al. (2011, 2012) suggest a graph-based approach, in 
which the effectiveness of ‘sense-making’ of the topology of an 
ontology will be improved. In their method, they place the 
concept with highest information richness – measured by density 
of properties and taxonomic relationships of a concept – at the 
centre of the graph. Using a ‘middle-out’ approach, their proposed 
tool (called KC-Viz) organizes the other nodes around the centre 
(i.e. the node with highest information richness). They evaluated 
this approach with an empirical experiment: 21 subjects were 
asked to answer questions (i.e. problem-solving task) using KC-
Viz and also OWLViz (the default visualization tool of Protégé). 
They found out that efficiency of performance was higher for 
KCViz (i.e. time taken to complete the task was shorter on 
average). From a subjective evaluation point of view, subjects 
were asked to report their satisfaction levels as well. Motta et al. 
showed that KC-Viz led to higher satisfaction among users.  
    The summary analysis of this method would be similar to Table 
1, except for one addition: the data is encoded based on 
information richness. 

 Figure 5 shows an example of an ontology in KC-Viz.  
 
 

 
Figure 5. KC-Viz 

3.1.4 Wheel-Graph  
To visualize content within an ontology (based on user-defined 
filters), Tscherrig et al. (2012) proposed wheel-graph 
visualization. Rather than visualizing the whole ontology, they 
assumed that users are searching for particular information. From 
the ontology, one can infer what relationships exist, and what 
relationships can happen (i.e. axioms); thus, based on the axioms, 
this paper tries to visualize the relationship between search 
criteria. The authors developed a prototype called Memoria-Mea 
project. Memoria-Mea creates wheel graphs for each search 
criterion, and based on the relationship between different criteria, 
visually structures results of each parameter within a layer.  

As an example, they explored an ontology related to travelling. 
Some of the relevant concepts (classes) in this ontology are: 
“country”, “people”, “geographical location”, and “activity”. The 
relationships between these classes (i.e. the axioms) are: “people” 
visit “countries”, “people” go to a “geographical location” within 
a “country”, and “people” do some type of “activity” at a 
“geographical location”. Based on these assumptions, when a user 
searches for the activities done by people who visited Switzerland, 
Memoria-Mea will generate a layered wheel graph visualization 
of the results similar to Figure 6.  

 

 
Figure 6. Wheel Graph visualization of content in an 
ontology 

The authors also did a usability study with six subjects. All 
subjects found the required information using Memoria-Mea (i.e. 
successful performance of a task). Tscherrig et al. (2012) also 
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evaluated5 users’ subjective perceptions of the visualization; 
overall subjects found the interface to be easy to use, and “not 
frustrating”.  Table 2 summarizes this method: 

Table 2. Wheel-Graphs Summary 

Idiom Wheel-graphs  
What: Data Ontological axioms as search criteria 
How: Encode Each criterion is modelled as a circle. Adjacency 

of circles represents relationships between 
classes. 

Why: Task Visualizing search results 
Scale Limited to 5-10 different criteria 

 

3.2 Multi-Method Visualization Techniques 

3.2.1 Graphs and Space-filling Blocks 
In order to improve understandability of OWL ontologies, Jurcik 
and Sochor (2012) introduced a plug-in for Protégé, called 
Knoocks. In this visualization method, each node in the graph is a 
space-filling block that represents class hierarchies. A block is 
designated for each subclass of OWL:Thing. The subclasses of the 
said class will be represented in a hierarchy. In the example from 
Figure 7, “Destination” is a subclass of OWL:Thing. Some of the 
subclasses of “Destination” are “Country”, “Town”, and “City”.  

 
Figure 7. A block in Knoocks 

This visualization method is particularly useful for displaying 
an overview of the whole ontology, in order to achieve a general 
understandability. As can be seen in Figure 8, the relationships 
between blocks are visualized as edges between the blocks. 
Different colours represent different types of relationships. For 
example, pink is used to model the relationship titled “Travels to”, 
and connects “Passenger” and “Destination” blocks. Table 3 is the 
summary analysis of this technique: 

Table 3. Knoocks Summary 

Idiom Knoocks  
What: Data Ontological data 
How: Encode Class hierarchies are represented as space-filling 

blocks. To model the relationship between 
different class hierarchies within the ontology, 
each block acts as a node in a graph. Links 
represent relationships between different classes. 

Why: Task Understanding and overview of the ontology 
Scale Limited to 5-10 different criteria 

                                                                    
5	  Descriptive statistics were not provided for this study.	  

 

 
Figure 8. Overview of an ontology in Knoocks 

3.2.2 Lists and Linked Histograms  
As a design study paper, Streicher and Roller (2012) presented a 
visualization to display semantic search results. The application 
domain was image interpretation, for tasks such as pollution 
detection, cartography, ice layer monitoring and surveillance. 
These tasks are done on data gathered by Synthetic Aperture 
Radar (SAR) sensors, and then stored based on “a domain 
ontology that encompasses concepts of the specific field of work” 
(Streicher and Roller 2012, p. 51). Their motivations for using 
ontologies were the facilities that ontologies provide in 
interoperability (of different data sources), as well as the 
advantages in performing semantic searches.  

The proposed visualization is composed of two views: First 
view presents a list of the facilities for which SAR data has been 
gathered. The ranking of this list could be based on the frequency 
of classes of data for each facility. The second view, which is 
linked to each of the facilities in the list, presents histograms of 
signal strengths of different classes of sensory data. The 
visualization proposed in this study, also allows for inverse 
lookup of locations based on a special class of sensory data. More 
specifically, the first view displays classes of sensory data based 
on location, while the second mechanism, lists locations in which 
a certain class of sensory data are present. Figures 9 and 10 
represent the two features respectively. 

 
 

 
Figure 9. Displaying histograms based on a location on the 
list 
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Figure 10. Displaying locations that feature a certain class 
of sensory data 

Table 4 provides a summary of this approach: 

Table 4. SAR Summary 

Idiom SAR Visualization 
What: Data Sensory radar ontologies 
How: Encode A list of locations (sorted by frequency) is linked 

to histograms displaying strength of different 
signals 

Why: Task Semantic interpretation of sensory data 
Scale Limited 

 

3.2.3 Hierarchical Connected Circles (Radial Layout), 
Indented Trees, Node-link Diagrams 

In order to support seven high-level tasks of overview, zoom, 
filter, details-on-demand, relate, history, and extract, Kuhar and 
Podgorelec (2012) proposed a visualization tool that provided 
multiple views of large and complex ontologies (i.e. high scale).  
The implementation that they proposed, displays hierarchical 
connected circles (to provide overview), indented trees (to relate 
different concepts), and node-link diagrams (for filtering and 
details-on-demand). They also designed a toolbar through which 
the user could change the speed of animation for a dynamic graph 
(showing history of ontology’s evolution), and also choose the 
level of semantic zoom.  

Figure 11 shows hierarchical connected circles; the outermost 
circle shows the top level classes in the ontology (direct children 
of OWL:Thing). Each of these classes is coded with a colour 
(different hues). Subclasses of the aforementioned classes are 
visualized within inner circles, coded with different levels of 
saturation of the parent’s colour. The relationship between classes 
are also modelled as links, connecting different segments of 
circles to each other.  

 

 
Figure 11. Visualizing ontology as hierarchical connected 
circles 

Figure 12 shows a small section of the circle, in which the user 
has zoomed in to see the information related to the class of 
“Professor” in more detail. 

 

 
Figure 12. Semantic zoom on one of the classes in the ontology. 

Figure 13 shows to toolbox available for filtering, zooming, and 
animation. Figure 14 displays the indented tree and node-link 
diagrams of the same ontology. 
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      Figure 13. Filtering, zooming, and animation pane 

      
Figure 14. Indented tree and node link visualization of the 
university ontology 

Table 5 summarizes this approach: 

Table 5. Multi-View Ontology Visualization Summary 

Idiom Multi-view Ontology Visualization 
What: Data Ontologies 
How: Encode Colour coded hierarchical connected circles 

represent classes and relationships; indented trees 
used to zoom on a particular subset of the 
ontology; and node-link diagrams representing 
connections between classes 

Why: Task Overview, zoom, filter, details-on-demand, 
relate, history, and extract 

Scale High 
 
Another (somehow similar) tool was developed by Ma et al. 

(2012) as part of a design study that visualized geological time-
scale data. They also used radial layout (or hierarchical circles) 

with colour coding, however, they placed the superclasses in the 
inner circles, while the subclasses were represented in the outer 
circles (as opposed to the visualization proposed by Kuhar and 
Podgorelec 2012). Figure 15 shows a snapshot of this tool.  

Ma et al. (2012) also did a user study with 19 participants. They 
asked the users to navigate through the visualization and at the 
end answer a usability survey. Subjects’ average scores were 
between “useful” and “very useful”.  

 
Figure 15. Radial layout to visualize geological data 

3.2.4 Hyperbolic and Radial Trees 
Another technique proposed to facilitate comprehension of the 
overall view of the ontology (i.e. concepts and their relationships) 
is implemented in OntoViewer – a tool developed by da Silva et 
al. (2012a). This tool facilitates visual exploration of large 
ontologies by employing three integrated views: “a hyperbolic 
tree for representing the ontology hierarchy; a classic tree view for 
showing ontology entities, and an augmented radial tree for 
displaying relationships between classes” (da Silva et al. 2012, p. 
93). The tree view is similar to the indented list that is provided by 
Protégé (Figure 1). The 2D hyperbolic tree provides 
focus+context features and reduces the cognitive load of users 
when interacting with a large ontology. The hyperbolic trees that 
this paper suggests is similar to force-directed graphs (in Figure 3) 
that others had also proposed (Mutton and Golbeck 2003; 
Vercruysse et al. 2012).  

The most interesting visualization in OntoViewer is the 2.5D 
radial tree – which is to some extent similar to hierarchical 
connected circles (proposed by Kuhar and Podgorelec 2012). The 
class hierarchy is modelled in the radial tree: the class under focus 
will be at the centre, and all of its subclasses will orbit (or circle) 
around it. The relationships between classes (i.e. mutual properties 
between two classes) are “represented as curved lines in space 
(thus yielding 2.5D), connecting the related classes without 
interfering with the display of the hierarchical structure” (da Silva 
et al. 2012a, p. 93). The tool also allows for viewing the ontology 
“by choosing to display one or more relationships at the same time 
or hiding them, choosing which levels of the tree are to be shown 
or hidden, performing rotations around the axes X, Y and Z, zoom 
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and pan, i.e. providing full 3D navigation” (p. 93). Figure 16 
shows the 2.5 radial tree visualization.  

 
Figure 16. 2.5D Radial Tree Visualization of an ontology 

The authors posit that providing multiple and coordinated views 
in OntoViewer will help in pattern recognition and revealing 
hidden relationships in large ontologies. 

In a later paper, same authors (da Silva et al. 2012b) discuss the 
possibility of visualizing ontologies using OntoViewer at 
intensional as well as extensional levels. Intensional level 
representation deals with classes and relationships between classes 
(i.e. data schema), while extensional level represents individual 
observations or instances of classes with specific property values. 
The authors point out that intensional level is more important 
from the point of view of knowledge engineers as they may “want 
to visualize different aspects due to specific demands that arise in 
certain stages of development, for example, checking the range of 
an object property” (p. 2). Extensional representations, on the 
other hand, are claimed to be “more interesting from the point of 
view of professionals that maintain knowledge databases [since] it 
seems necessary to have views of the synthetic instances 
distribution allowing to see how attribute values are distributed 
and to perform quick visual queries about instances, observing 
trend in values” (da Silva et al. 2012b, p.2).  

The features of OntoViewer introduced earlier enables all the 
needs of knowledge engineers for viewing intensional level 
representation of ontologies. As for extensional representation, the 
authors built upon the OntoViewer tool, and added another view 
by employing overview+detail methods using an icicle tree. 
Figure 17 shows an icicle tree representing the instances of the 
“Worker” class. This visualization is similar to the space-filling 
blocks in Knoocks (Jurcik and Sochor 2012).  

Aggregating the summary analyses in Tables 3 and 5 will 
describe OntoViewer. 

 
Figure 17. Icicle tree from OntoViewer for visualizing 
ontologies at extensional level 

 
    The OntoViewer tool also provides a hybrid view (intensional 
and extensional), as depicted in Figure 18. The authors also 
evaluated their tool by interviewing small group of experts – all of 
whom found the tool “effective”.  
 

 
Figure 18. Intensional and extensional representation of an 
ontology in OntoViewer 
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3.2.5 Treemap, Hiearchies, and Radial Layout 
Another multi-method tool is Onto-VisMod by Garcia-Penalvo et 
al. (2012) that incorporates treemaps to represent large ontologies 
(which “uses the whole available space in the dimensional 
plane”), hierarchical trees to analyse the taxonomy of concepts, 
and radial layouts to represent the global coupling of an ontology.  

The treemaps and hierarchies can be transposed onto each other 
to give a taxonomy of the domain, while making use of “two-
dimensionally squared maps, where the lower levels are 
represented as internal squares located inside the higher level 
maps” (p. 11472).  Figure 19 captures a snapshot of this view. 

 

 
Figure 19. Treemap and hiearchies within an ontology 

 
Onto-VisMod uses radial layouts6 to visualize the relations 

among classes in the ontology. On one side of the circle is a list of 
classes, the other side list of properties. Properties that are used in 
definition of a class are linked to it.  

User has the ability to focus on a particular class: when a class 
is selected, properties that define it will be highlighted, and the 
links become coloured. This visualization method is different 
from hierarchical connected circles (Kuhar and Podgorelec 2012), 
as the hierarchy of classes is not modelled here, and in addition, 
the user would see the list of all properties in the relevant universe 
(i.e. application domain). Figure 20 shows the radial layout view 
in Onto-VisMod. 

The authors did an empirical evaluation of this tool with 21 
subjects. The experimental task involved navigation through the 
ontology and creating a new class. The same task was also done 
by the users with Protégé. The results of the experiment showed 
no statistically significant difference in performance (i.e. 
completion of the task). However, users’ satisfaction scores with 
Onto-VisMod were higher (than their satisfaction with Protégé). 

                                                                    
6 This visualization method is different from hierarchical 
connected circles (Kuhar and Podgorelec 2012), as the hierarchy 
of classes is not modelled here, and in addition, the user would see 
the list of all properties in the relevant universe (i.e. application 
domain). 

 
Figure 20. Radial layouts in Onto-VisMod 

Table 6 provides a summary of Onto-VisMod 

Table 6. Onto-VisMod Summary 

Idiom Onto-VisMod 
What: Data Ontologies 
How: Encode Treemap and hierarchies to represent the class 

structure. Radial layouts visualize classes and 
properties. Classes are connected to the 
properties that define them.  

Why: Task Overview – domain comprehension 
Scale High 

 

3.3 Euler Diagrams 
ConceptViz is a tool developed by Burton et al. (2014) that 
employs Euler diagrams to visualize topological properties of 
ontologies and provide an overview of the semantic information 
that an ontology conveys. This approach might be limited in scale, 
as it only shows the relationships between a few concepts 
(classes) at a time. However, this method could visually represent 
set inclusion when a curve is contained by another – reflecting a 
subsumption relationship. In short, this method is most useful for 
providing an abstract description of the ontology. Figure 21 shows 
an example in ConceptVis. Visualizing three concepts in the 
“Pizza” ontology, it shows that the class of thin and crispy pizzas 
is a subset of specialty pizzas. At the same time, one can infer that 
deep pan pizzas and thin and crispy pizzas are disjoint concepts, 
however, some deep pan pizzas are considered specialties of the 
pizzeria. 
    Table 7 summarizes this method. 

Table 7. ConceptViz Summary 

Idiom ConceptViz 
What: Data Ontologies 
How: Encode Classes as circles – same principles as Venn 

diagrams 
Why: Task Overview 
Scale Limited 
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Figure 21. Euler diagram visualization of the pizza ontology 

Using Euler diagram visualization of ontologies, Howse et al. 
(2011) did a case study, and visualized Semantic Sensor Networks 
(SSN) ontology. SSN is an ontology in the philosophical sense 
(i.e. structure and order of reality in a broad sense) rather than 
representation of a single domain. SSN was developed by the 
World Wide Web Consortium (W3C)7; in this ontology world is 
made of objects that sense, and make observations.  Using Euler 
diagrams, Howse et al. (2011) demonstrate how they can merge 
simple axioms into more complex axioms to describe the world 
according to SSN. 

4 METHODS TO MODEL ONTOLOGIES 
Significant focus has been put on modelling ontologies in the 
literature. Here, three of those studies will be briefly discussed.  
    Silva-Lopez et al. (2014), introduced a graphical notation – 
called Onto Design Graphics (ODG) – based on UML 
components. They posit that it could be a standard notation for 
ontology engineering research; it is easy to learn and could be an 
efficient method in design and integration of ontologies. The 
contribution of this work was establishing a formalized mapping 
between ontological concepts and UML constructs. 

Console et al. (2014) proposed another modelling grammar – 
named Graphol - as an alternative to UML-based visualization of 
ontologies. In Graphol grammar, symbolic constructs are assigned 
to each ontological concept; for example, rectangle for a concept 
nodes (i.e. class), circle for attributes, and hexagon for individuals 
(i.e. instances) in the ontology. They performed a an empirical 
evaluation of Graphol (by comparing with UML-based 
visualizations); the average correctness scores in comprehension 
tasks were not statistically8 different between the two groups 
(Graphol vs. UML-based), however, users reported Graphol to be 
easier to use than other methods  - This user study was basically a 
comparison between two graph-based models.  

Visual Web Ontology Language (VOWL), is a noteworthy 
method, which is developed by Lohman et al. (2014). The 

                                                                    
7	  http://www.w3.org/2005/Incubator/ssn/ssnx/ssn accessed on 
05/12/2014	  
8	  The authors did not provide descriptive statistics of their tests. 

constructs of this grammar are primitive shapes and a colour 
scheme (shown in Figures 22 and 23 respectively).  

 
Figure 22. VOWL graphical primitives 

 
Figure 23. VOWL colour scheme 

A user study with six expert users was conducted to evaluate 
VOWL. The experimental tasks were comprehension questions, 
and overall, “participants could solve most of the tasks correctly 
(84%)” (Lohmann et al. 2014, p. 11). This was, however, a 
qualitative user study in order to verify the general ideas of 
VOWL, and also receive feedback from users in order to enhance 
VOWL for non-expert (novice) ontology users. 

Figure 24 shows a visualized ontology created with VOWL. 
Table 8 summarizes the VOWL method.  

 

 
Figure 24. An ontology in VOWL 
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Table 8. VOWL Summary 

Idiom VOWL 
What: Data Ontologies 
How: Encode Primitive shapes, in addition to colours. Zoom 

and focus features facilitate achievement of 
users’ objectives 

Why: Task Domain Comprehension 
Scale Relatively high 

 

5 META-ANALYSIS 
Among the papers that were reviewed in this survey, 11 of them 
had done a user study. Some of them were qualitative user studies 
with limited number of participants. However, four of these 
studies are relatively similar as they study one form of 
visualization enhancement and compare it with the baseline view 
of Protégé.  

To perform a quantitative review of these studies, a statistical 
synthesis (i.e. meta-analysis) of their findings was conducted; 
such analysis enables reflection upon the findings of the past 
researchers (Borenstein et al. 2011).  

A meta-analysis could be conceptualized as either a fixed-
effects model or random-effects (Borenstein et al. 2011). Fixed-
effects model assumes that all the studies in the meta-analysis are 
identical and they share a common effect size. Any variation that 
exists between the findings of different studies in the pool would 
be due to sampling error. “Put another way, all factors that could 
influence the effect size are the same in all the studies” 
(Borenstein et al. 2011, p. 63).  

The random-effects model, on the other hand, incorporates a 
group of studies in a meta-analysis, assuming that they have 
“enough in common that it makes sense to synthesize the 
information, but there is generally no reason to assume that they 
are identical” (Borenstein et al. 2011, p. 69). The variation in 
different studies is attributed to sampling error, as well as Random 
Effects Variable (i.e. the variation between studies, such as the 
chosen variables for the study, or the experimental methods). 

The four studies that were analysed here had different 
independent and dependent variables, yet they all had focused on 
the impact of visualization on some measure of user performance. 
Due to the fact that studies in the pool are not identical, random-
effects model was chosen for the purpose of this analysis.  

5.1 Data Coding 
The statistics available from these studies were in the form of 
means and standard deviations. Therefore, to perform the 
synthesis (i.e. meta-analysis), the findings of the studies were 
converted to Cohen’s d.  

Since the sample sizes were different in each study, Cohen’s d-
values needed to be unbiased; this was done by assigning weights 
to the d-values according to their respective standard errors 
(Borenstein et al. 2011). Positive effect sizes mean that 
visualization enhancement led to an improvement in performance 
(e.g. faster completion time, or higher comprehension score) – and 
vice versa for negative effect sizes. Table 9 represents the data in 
the analysis.  

 
 
 
 
 

Table 9. Meta-analysis data 

Reference Independent 
Variable 

Dependent 
Variable 

Sample 
Size 

Effect Size 
(Unbiased 
Cohen’s d) 

Katifori et al. 
2006 

 TGViz 
(Node-link) 
vs. Protégé  

Accuracy 23 -0.49 

Motta et al. 
2011 

 

KCViz 
(Node-link) 
vs. Protégé  

Completion 
Time 

21 1.01 

Usability 
Score 

21 0.26 

Garcia-
Penalvo et al. 
2012 

OWL-
VisMod (tree 
+ radial 
layout) vs. 
Protégé  

Accuracy 21 -0.14 

Usability 
Score 

21 0.79 

Fu et al. 2014 Node-link 
vs. Protégé  

Completion 
Time 

36 -1.32 

Accuracy 36 0 
 

5.2 Analysis and Discussion of Results 
The average unbiased Cohen’s d of this analysis is 0.014, with the 
95% confidence interval of -1.21 to 1.22. This means that an 
alternative visualization (compared to indented lists in Protégé) 
can improve a measure of performance by 0.014 standard 
deviations from the mean (i.e. the average performance achieved 
by users of indented lists) – which is a very weak effect (almost 
none). 95% of the time, the impact of the alternative visualization 
falls in the reported credibility interval. In other words, 95% of the 
time, an alternative visualization method could reduce 
performance effectiveness by -1.21 standard deviations or 
improves it by 1.22 standard deviations. 
    Grouping the effect sizes based on dependent variables 
provides additional insights, as seen in Table 10. Accuracy and 
completion time for users of the baseline representation (i.e. 
Protégé) is superior to the performance of users when they use 
alternative visualization methods. However, subjects’ perceptions 
(usability score and satisfaction) will be higher when they have 
access to alternative visualization methods. The usability score 
has 95% confidence interval of 0.20 to 0.84, meaning that users 
will find (mostly graph-based) alternatives more appealing.  

Table 10. Grouping the variables of the meta-analysis 

Dependent 
Variable 

Average 
Unbiased 
Cohen’s d 

No. of 
Reported 
Effect 
Sizes 

95% 
Credibility 
Interval 

Accuracy -0.21 3 -0.45 to 0.12 
Completion 
Time 

-0.16 2 -2.90 to 2.56 

Usability Score 0.53 2 0.20 to 0.84 
   
    As possible justification for these findings, one could 
(tentatively) hypothesize that subjects’ perceptions of an 
alternative visualization method might be influenced by its 
novelty and differentiation compared to the baseline 
representation (i.e. indented lists in Protégé); thus, positive 
impressions lead to higher usability scores for alternative 
visualization methods. However, as the meta-analysis shows, 
objective measures - accuracy in particular - are usually higher 
when users access the indented list representations. This could be 
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due to nature of ontological data, in which hierarchies are inherent 
to them. Indented lists incorporate the hierarchy, and also are 
familiar representations to users of computer systems (as used in 
Windows Explorer, Mac OSX Finder).  

6 SUMMARY AND CONCLUSIONS 
The present work gathered 21 different studies that had focused 
on visualization of ontological data. This pool included a mixture 
of method and design study papers. Each paper was described, 
and categorized based on its respective visualization method.  

Moreover, a meta-analysis was done on four papers that even 
though they were not identical, they had enough in common to 
justify synthesizing their findings. These studies had compared 
alternative visualization methods (three of them studied graph-
based visualizations) with the baseline representation of 
ontologies, which is indented list in Protégé. The analysis shows 
that measures of accuracy and task completion time are prevailing 
for baseline visualization (i.e. Protégé) compared to alternative 
visualization methods. However, subjects find new approaches 
more satisfying – perhaps due to their novelties.  

The present study calls for more effective visualization methods 
that incorporate the hierarchical nature of data (which are inherent 
in ontologies); the new methods need to focus on improving 
objective measures of user performance such as accuracy of 
answers and task completion time. 
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