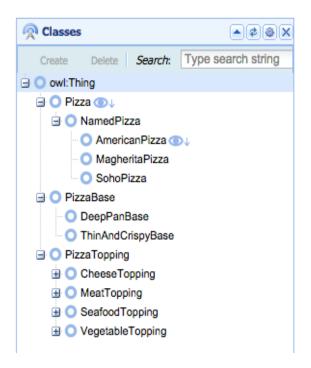
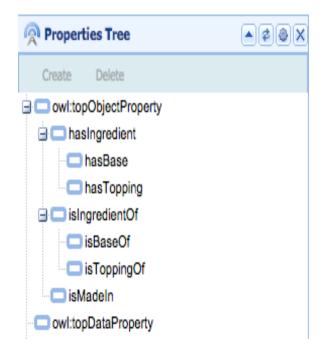
# Visualizing Ontologies – A Literature Survey

Arash Saghafi

#### **Overview**

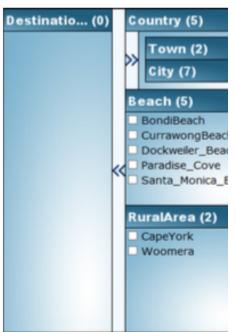
- 21 papers were gathered a mix of design study and method papers
  - Graph-based Approaches
  - Multi-Method Visualization Techniques

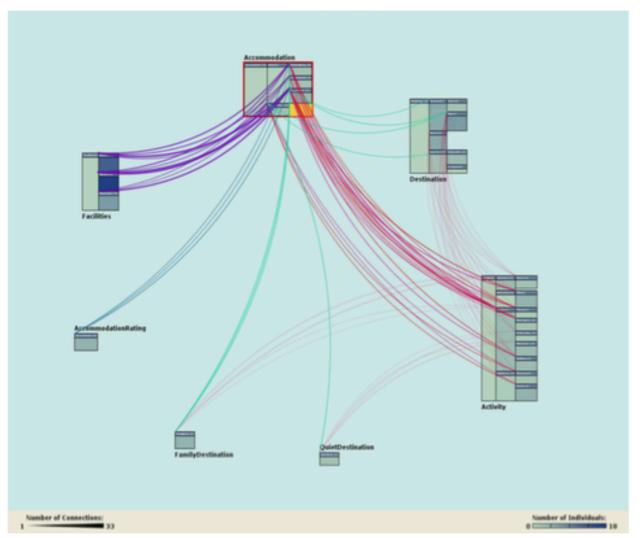

- Four empirical studies were similar enough to justify a meta-analysis
  - Accuracy, completion time, and user satisfaction were dependent variables in the analysis.


# **Background**

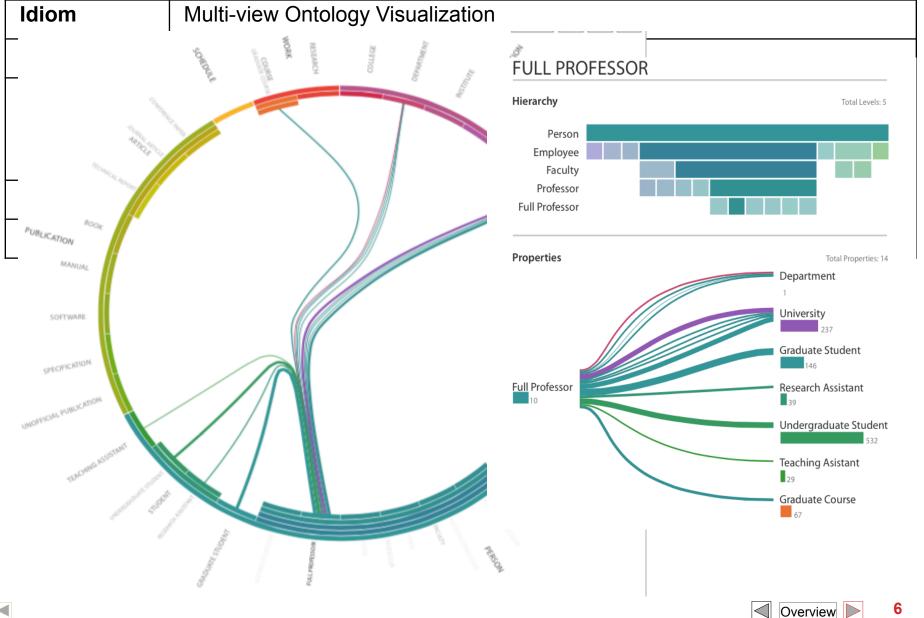
- Ontology is a "branch of philosophy which deals with the order and structure of reality in the broadest sense possible" (Angeles 1981).
  - Domain ontology: a set of concepts, their relationship, what can happen, what can exist (Wand and Weber 2002).
- Ontologies are used in diverse fields such as biomedical information, systems engineering, and semantic web to represent domain knowledge (or the semantic meta-data).
  - Visualization of ontologies can improve tasks such as understanding of implicit knowledge and information alignment.
- Katifori et al. (2007), Lanzenberger et al. (2010), and Granitzer et al. (2010) had also surveyed the literature for ontology visualization methods.
- The current work gathers 21 papers, from 2003 to 2014
  - Mostly published after 2011
  - Specifically looked at papers that were not included in previous surveys.

#### **Ontology Language and The Baseline Representation**


- Standard language in ontological engineering is OWL (Web Ontology Language – supported by W3C).
- Protégé is the most widely used tool for editing ontologies.
- The visualization method used in Protégé is indented lists.







# **Graph-based Visaulizations**

| Knoocks |                      |
|---------|----------------------|
| Ontolc  | -                    |
| Class   |                      |
| Links ı |                      |
| Under   |                      |
| Limite  |                      |
|         | Ontolc Class Links I |





#### **Multi-Method Visualizations**



# **Meta-analysis**

- Four studies were similar enough to justify a random effects metaanalysis
  - Variation is attributed to sampling error, as well as Random Effects Variable (e.g. different DVs, or the experimental methods).
- Converted reported statistics to Cohen's d

| Reference                  | Independent<br>Variable             | Dependent<br>Variable | Sample Size | Effect Size<br>(Unbiased<br>Cohen's d) |
|----------------------------|-------------------------------------|-----------------------|-------------|----------------------------------------|
| Katifori et al.<br>2006    | TGViz (Node-<br>link) vs. Protégé   | Accuracy              | 23          | -0.49                                  |
| Motta et al. 2011          | KCViz (Node-link)<br>vs. Protégé    | Completion Time       | 21          | 1.01                                   |
|                            | l con recege                        | Usability Score       | 21          | 0.26                                   |
| Garcia-Penalvo et al. 2012 | OWL-VisMod<br>(tree + radial        | Accuracy              | 21          | -0.14                                  |
|                            | layout) vs. Protégé                 | Usability Score       | 21          | 0.79                                   |
| Fu et al. 2014             | t al. 2014 Node-link vs.<br>Protégé | Completion Time       | 36          | -1.32                                  |
|                            |                                     | Accuracy              | 36          | 0                                      |

#### **Discussion of Results**

- The average unbiased Cohen's d of this analysis is 0.014, with the 95% confidence interval of -1.21 to 1.22.
  - Very weak (non-existent) effect.
- Grouping based on Dependent Variables

| Dependent<br>Variable | Average Unbiased<br>Cohen's d | No. of Reported<br>Effect Sizes | 95% Credibility<br>Interval |
|-----------------------|-------------------------------|---------------------------------|-----------------------------|
| Accuracy              | -0.21                         | 3                               | -0.45 to 0.12               |
| Completion Time       | -0.16                         | 2                               | -2.90 to 2.56               |
| Usability Score       | 0.53                          | 2                               | 0.20 to 0.84                |

### **Summary and Conclusion**

 New visualizations are appealing to users because of their novelty.

- Indented lists are still advantageous
  - Either due to the inherent hierarchical nature of ontological data, or prior familiarity of users.
- Call for new visualization methods for ontologies that also improves objective performance measures such as accuracy of answers and task completion time.

# **QUESTIONS?**