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Abstract—The literature review is a key component of academic research, that allows researchers to build upon each other’s work.
Yet it requires researchers to browse hundreds of publications to find the ones related to their own work. While modern search
engines enable fast access to publications, there is a lack of support for filtering out the vast majority of papers that are irrelevant
to the current research focus. We present PaperQuest, a visualization tool that supports efficient decisions, by only displaying the
information useful at a given step of the process. We propose a relevance algorithm to find and sort papers that are likely to be
valuable to users, based on the papers they have already expressed interest in, as well as the number of citations. The current
implementation uses papers from the CHI and UIST conferences, and citation counts from Google Scholar, but is easily extensible to
other domains of the literature.

1 INTRODUCTION

The literature review is a key element of academic research. It allows
researchers to build upon each other’s work, and ensures that progress
is being made. It is particularly critical for researchers entering a new
domain, who are faced with the challenge of learning enough about
it to make meaningful contributions. However, the scale of research
in modern days makes this process difficult: even for a relatively well
specified domain like Information Visualization, there are thousands
of publications, spread into multiple conferences and journals, from
authors scattered around the globe. Along with Zhang et al. [18], we
believe that providing effective support for reviewing the literature can
benefit the research community as a whole, and ultimately improve
scientific productivity.

On any given topic, researchers must search and browse hundreds
of publications to find which ones to read, and which ones to ignore.
To avoid wasted time and effort, only publications that are meaningful
and valuable to the researcher should be considered, so deciding what
to read is a critical task. We discuss a multi-level decision process
that accomplishes this as efficiently as possible, by gathering only the
minimum amount of information on each paper to decide whether to
keep it or not for the next level.

We present PaperQuest, an information visualization prototype that
supports this multi-level decision process with simple interactions and
an intuitive metaphor. A custom relevance algorithm finds and sorts
papers that are likely to be valuable to users, based on the papers they
have already expressed interest in. The number of citations is also
taken into account, as a measure of the impact of a paper on the re-
search field. Two additional views provide information on different
facets of the data: the authors that frequently publish in this area, and
the years of publication of the papers.

We begin, as customary, by reviewing the literature that addresses
problems similar to ours. We then describe our data and task abstrac-
tions, present the general philosophy of our prototype, the underly-
ing relevance algorithm that it uses, and discuss the visual encoding
choices we made.

2 RELATED WORK

Two high-level approaches to visualizing the scientific literature can
be distinguished. Some emphasize its network aspect, and often use a
node-link diagram representation; while others choose to display the
multiple facets of the literature, such as authors, publication years,
and keywords. However, relatively few solutions have been proposed
to help users make sense of the information space around a particular
topic — which is at the heart of the literature review process.
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2.1 Literature as a Network
Many visualizations have been created to analyze the scientific litera-
ture, in particular in the Infovis community. Borner et al. use node-link
diagrams to represent papers and authors, linked by citations or co-
authoring relationships [1]. The size of the nodes encodes the number
of citations received by a paper or an author, while the year of publi-
cation is encoded by the hue. The authors had to discard papers with
less than 15 citations to avoid the hairball problem. CiteWiz provides
several concept maps for influential authors and frequent keywords,
but these lack readability because of the same hairball problem. It also
features rather complex Growing Polygon techniques to visualize the
influence of authors on each other [5].

To address the issue of the exponential number of links between
papers, Citevis [13] proposes to show citation relationships by coloring
nodes with the same hue, instead of drawing connection marks. The
drawback of their interactive approach is that only a small subset of
links are shown at a given time, which makes big picture views more
difficult to obtain. Besides, only the most cited papers for each year
were shown.

In contrast, the Citeology tool [11] displays three thousand CHI
and UIST papers in a tiny font, stacked vertically for each year. ”Par-
ents” and ”children” of a selected paper are highlighted and shown
with smooth links. However, attempting to display the second or third
generation usually results in an entangled set of links, especially for
highly-cited papers. Keyvis [7] takes a different approach: after an-
alyzing co-occurrence of keywords, it displays the results with large
node-link diagrams and trees, to visualize trends in the Infovis litera-
ture.

2.2 Faceted Data Browsing
The hairball problem, and in general the large number of papers in the
literature have encouraged alternative approaches to the node-link dia-
gram. These approaches emphasize the faceted aspect of the metadata
in the literature, and often use aggregation. Browsing faceted data has
often been addressed, from the influential Flamenco system [17] to
the recent idea of PivotPaths [4], in which selected metadata is used to
transition continuously from one facet of the dataset to another, pre-
serving the context.

In the context of the scientific literature, PaperLens [9]s aims at
visualizing trends via a series of histograms that show the popularity
of a keyword over time. It features multiple faceted views, such as one
for selecting authors and one with a schematic representation of the ten
most highly cited papers per year. These views are tightly linked, so
that papers written by the selected authors are shown as colored layers
in the topics histograms, for instance.

Netlens [8] is a general network visualizer that aggregates data for
content and actors — in our case, papers and authors. The system is
highly interactive: detailed views are shown for each type of data, and
selection can be passed back and forth between the two facets of the
data. While these approaches are interesting, they are not well suited



for a literature review, in which only a small subset of the literature is
relevant to the user.

2.3 Literature Review as Sensemaking

Although many attempts have been made to visualize an entire domain
of the literature, either with a node-link diagram or aggregate views,
very few work actually addresses the task of a literature review. In-
stead of providing a top-down overview, there is a need to help users
build a bottom-up understanding of a local neighborhood.

An early system was introduced by Mackinlay et al. [10], who rep-
resented each paper as a ”butterfly”, with its references on one wing
and its citations on the other. At the time, the main concern of the
authors was to handle very slow network connection to access remote
databases. More recently, Zhang et al. proposed CiteSense [18], a text-
based interface dedicated to searching, filtering and organizing papers
during a literature review. After finding an interesting paper, the user
can see papers that cite or are cited by it. The context of each citation
is also provided, by showing the snippet of text in which the source pa-
per is referenced. Some general-purpose sensemaking tools have also
been used successfully for literature reviews, such as Jigsaw [14].

However, Apolo [3] is probably the closest to solving the problem
we are addressing. From a seed paper, it fetches ten papers with a high
number of citations, and tries to predict in which topic users are likely
to consider them. They build upon the concept of the sensemaking
loop [12] to explicitly support the creation and reorganization of an
external mental representation of the domain of interest, subdivided
into several user-defined topics. Our own system aims instead at find-
ing the most relevant papers based on all those the user has expressed
interest in, and provide easy access to the metadata and abstract of
each paper.

3 DATA

The scientific literature is an immense source of data, consisting of
all the papers published, their metadata and relationships. Our own
interests lie in the fields of HCI and InfoVis; for the sake of feasibility,
we decided to focus on these two areas.

3.1 Datasets

Justin Matejka from Autodesk Research kindly agreed to share his
own dataset with us, assembled for the Citeology tool [11], which con-
tains papers and citations for the CHI and UIST conferences between
1982 and 2010. We also downloaded a dataset of InfoVis conference
papers from 1995 to 2013 used for CiteVis [13], a project from the Il
Lab at Georgia Tech.

Both datasets contain the paper title, DOI1, year of publication and
conference, authors, and references to other papers within the dataset.
The Citeology dataset contains abstracts but no citation counts, while
the CiteVis one includes citation counts but no abstracts. We extended
the former by scraping Google for citation counts, and had originally
planned to add abstracts to the CiteVis dataset. However, due to time
limitations we did not manage to do this, and focused instead on the
Citeology dataset. Covering the HCI field was a priority because we
are more familiar with it, and so we could better evaluate the results of
our relevance algorithm, which computes a derived attribute for each
paper (cf. section Algorithm).

The references and citations form a directed network of papers. An-
other, independent network, arises from linking papers that have au-
thors in common, and dually authors can be seen as nodes and papers
as links between them. However, in the scope of this project we con-
sidered all data except references and citations as attributes of the pa-
pers themselves. Our data is therefore a multivariate network of 3501
nodes and 27587 directed links, of which 11697 are between papers
inside the dataset.

1A digital object identifier (DOI) is a character string used to uniquely iden-
tify an electronic document.

3.2 Data Wrangling
The data had already been cleaned, so our efforts went towards com-
pleting the dataset. Google Scholar provides citation counts as part of
its search results. It also protects itself against crawling and scraping,
making it difficult to extract those data for large quantities of papers.
We noticed that searching for the title of a paper in regular Google
Search often includes the Scholar entry within the first 10 results, so
we used the Kimono Labs tool2, to get the first page from a Google
Search of the title of each paper in our Citeology dataset. We then
wrote a Python script to parse these results, filter them, and join them
with our original data. The joining was done using the DOI, which
works as a universally unique key for each paper. Unfortunately we
could only find citation counts for 2848 (81%) of the papers with this
technique, so further processing is necessary.

Finally, we traversed the network of references to compute the ci-
tations of each paper, and stored them in addition to its references.
This redundant encoding does not increase dramatically the size of the
dataset, and makes future computations much easier, by avoiding the
need for a lookup in the entire dataset every time we need to access
the citations of only one paper.

4 TASK

It is difficult to begin a literature review effectively without an entry
point in the relevant literature. Therefore, we assume that people have
one or more seed papers available to them, usually provided by some-
one more knowledgeable about the field, or found by keyword search
on Google Scholar. After looking up these seed papers, people want
to discover related papers, which classically is done by browsing the
references of the seed papers, a ”backward search”; or the citations of
these papers, a ”forward search” nowadays available in many online li-
braries. The number of papers found in this process is potentially very
large, because papers reference dozens of other papers and are some-
times cited hundreds of times. Reading each reference and citation is
impossible.

Therefore, a crucial step in the literature review process is to filter
the papers that have been found, to identify the ones that will provide
the most information relevant to the domain of interest. An effective
strategy is to conduct a multi-level decision process, in which one gath-
ers on each paper only the minimal amount of information necessary to
decide whether to keep this paper for the next level or not. In practice,
we have observed that people seem to follow a similar approach:

1. Read paper titles, and keep only the ones that have a chance of
being relevant. One of our interviewees did so by opening each
paper’s ACM Digital Library page in a new tab of their web
browser, by clicking on Google Scholar’s search results.

2. Read the metadata, the abstract and/or watch the accompanying
video of the selected papers, to gather more detailed informa-
tion on their content. This is typically done on the publisher’s
website. However, some search engines such as Google Scholar
or hcibib.org, embed a preview of this information in the search
results themselves.

3. Add the papers with the highest expected information gain to
a ”to read” list. This can be accomplished by downloading the
PDFs to a folder, or adding the papers to a reference manager.

4. Read papers from this list.

5. Organize papers into different sub-categories, and annotate them.

This process is flexible and highly iterative: after reading some pa-
pers, one gets a better understanding of the domain of interest, and
gathers new papers that will eventually be filtered and read. It is also
common to do small-scale iterations, such as going back to reading
paper titles after reading the abstracts of a few papers (2 → 1). The
multi-level decision process affords some sort of batch processing,

2https://www.kimonolabs.com/



where there is often more than one paper being considered at each
step. While this is not required, we believe that the cognitive cost of
task switching repels users from processing only one paper at a time.
Figure 1 presents a summary of this process, and the appropriate task
abstractions.

Fig. 1. Task description. T1: the algorithm aggregates papers metadata
and relationships to compute a relevance score, and filters papers in
the Fringe based on this score. T2: encode citation count with size, and
superimpose links between papers on demand. T3: embed abstract
and metadata in the paper list view, and let users reorder it. T5: classify
papers into different subtopics. The dashed blue arrow shows that the
literature review is iterative; we could have added similar arrows from
any task to any previous task.

Finally, an important aspect underlined by Chau et al. [3] is that
people build a mental representation of the domain they are exploring
by classifying papers into different sub-topics. This classification can
happen during any of the steps described above, as soon as enough
information has been collected on the paper. Yet it may change signif-
icantly towards the end of the literature review, when a better mental
representation has been found. The resulting classification is com-
monly used to write subsections of the ”Related Work” section of a
paper.

5 DESIGN CONCEPT

A literature review is an exploration of the space of previously pub-
lished papers. This space can be divided into three subspaces, which
we identify as:

• The Core: papers you have read, upon which you build your
understanding of the field;

• The Fringe: papers you have access to, because they reference or
are cited by some papers from the Core;

• The Unknown, an immense and terrifying abyss made of all the
papers away from the Core.

As you make progress in the literature review, some papers from the
Fringe will be added to the Core, which in turn will cause new papers
to enter the Fringe. However, most of the papers will remain forever in
the Unknown. To support the multi-stage filtering process described
earlier, we add another subspace: the To Read list, consisting of the
papers that you have picked from the Fringe, but have not read yet.
This temporary buffer space is made necessary by the fact that reading
papers usually takes much longer than the other steps of the filtering
process, such as reading paper titles.

In the citations network, we define the Fringe as the papers that are
one hop away from a paper in the Core or the To Read list. The prob-
lem of exponential explosion described in the Tasks section applies
here: each paper references and can be cited by many other papers.
Yet, most of these papers are probably irrelevant to your particular do-
main of interest. We therefore propose to order the Fringe based on
a relevance score computed for each paper, which takes into account
the number of citation links between this paper and those you have
expressed interest in, as well as the number of citations of this paper.
In the next section, we address the problem of normalizing these dif-
ferent pieces of information; and in the following one we present an
algorithm for computing and combining them into a single relevance
score.

6 NORMALIZATION

To determine the relevance of a paper we use three quantitative met-
rics: the internal citation count, computed from the dataset; the exter-
nal citation count, scraped from Google; and a connectedness measure,
computed by our algorithm (see details in the next section). However,
these three metrics have very different scales. We normalize them to
[0,1] to allow meaningful comparisons, both in the algorithm and the
visual encoding.

Histograms of the internal and external citation counts show that
they follow a similar power law distribution (Figure 2), with a major-
ity of papers with zero or a few citations, and a long tail of papers with
ultimately very high citations counts. The scale of these distributions
is however drastically different, with a ratio of approximately 20. The
scatterplot in Figure 3 shows that there is no strong correlation be-
tween internal and external citation counts: for instance, a paper cited
only once internally can have anything from a handful to several hun-
dred external citations. Since most of the papers are clustered in the
bottom left of the scatterplot, we define two normalization parameters
that encompass most papers: 20 for internal citations, 400 for exter-
nal citations. The citation counts in each category are then divided by
the appropriate normalization parameter so that they vary in approxi-
mately the same range. We enforce a strict maximum of one, to keep
all values in the [0,1] interval. This means that the two normalization
parameters defined above act as cutoff points, above which papers are
simply considered to have the maximum possible citation count.

Fig. 2. (top) Distribution of the internal citation counts. (bottom) Distri-
bution of the external citation counts, scraped from Google.



Fig. 3. Internal versus external citation counts. The vertical axis has
been clamped halfway to show more detailed patterns at the bottom.

Finally, we apply a non-linear transformation to the normalized
counts, in order to spread apart the values at the bottom of the [0,1]
interval. Indeed, a paper cited five times is often much better than one
that has never been cited, whereas there is not much difference be-
tween papers cited 95 and 100 times. We used the square root function
because it maps [0,1] to itself and has a vertical tangent in 0, where we
want the maximum discernibility.

In addition to normalizing between internal and external citations,
we have to make sure there is no imbalance between years of publi-
cation. It seemed plausible that old papers would be cited more often
that newer ones, which simply did not have time to reach high citation
counts. Figure 4 (a,b) shows that this is not the case, at least for the
CHI and UIST conferences. Recency seems to affect papers only for
the first five or six years, and old papers are not cited more often. It
seems in fact to be the opposite: the median citation count is increasing
over time.

Fig. 4. (a) top left: internal citation counts of papers published in a given
year. (b) top right: external. (c) bottom left: normalized internal citation
counts. (d) bottom right: normalized external. We use medians as a
measure of central tendency to reduce the influence of outliers.

For our algorithm, we combine the internal and external citation
counts by taking the maximum of the normalized citation counts
(MNCC). This means that we are considering a paper as important
if it is well cited either in its own domain, or highly cited in other do-
mains. Besides, it accounts for the fact that many papers were missing
an external citation count, due to the imperfections of our scraping
method.

The variations of the normalized internal and external CC over time
are even stronger than before normalization (Figure 4 c,d). We there-
fore decided to also normalize across years, so that the median nor-
malized citation count is the same in each year. We achieved this by
computing the median of the median MNCC for each year, then lin-
early interpolate papers in each year to bring the median to the desired
value (Figure 5). The resulting twice-normalized citation count is used
as an input to our relevance algorithm, and referred to as the Adjusted
Citation Count (ACC).

Fig. 5. Adjusted Citation Count of papers published in a given year. The
red line is the median of the median maximum normalized citation count
for each year.

All of the graphs presented in this section are computed on-the-fly
for the papers dataset, and accessible on the ”dataset statistics” page.
However, they are not intended for casual users, but only for advanced
users who want to understand better their data and, eventually, set their
own normalization parameters.

The normalization of the connectedness measure is more straight-
forward: we simply compute the minimum and maximum connect-
edness measures for papers in the Fringe, and linearly transform all
connectedness measures to [0,1].

7 RELEVANCE ALGORITHM

The purpose of the relevance algorithm is to find papers related to
those that the user found interesting, and to compute how strongly re-
lated they are. Relatedness is, however, hard to define, and even harder
to compute. Our dataset does not contain authors’ keywords, nor any
kind of hierarchical organization. Natural Language Processing tech-
niques might be able to identify clusters of papers, but were beyond
the scope of this project. Instead, we rely on one fundamental char-
acteristic of the scientific literature: the fact that authors cite previous
work that they build upon. By interpreting these citations as links in a
network, we define relatedness as connectedness.

7.1 Connectedness Measure
The algorithm works on multiple sets of papers. The Interesting pa-
pers are the ones for which the user has expressed some interest, either
by adding them to the Core, to the To Read list, or by selecting them on
the Fringe. The Fringe is the one-hop neighborhood of the interesting
set: papers that either cite or are referenced by at least one interesting
paper. Note that the set of Selected papers represents the intersec-
tion of the Fringe and the interesting papers. Their union is the set of
Known papers; all the other papers are considered Unknown.

For each Known paper, we compute a connectedness measure as
the weighted sum of all the links between this paper and other papers
in the Interesting set. The weights represent the level of interest of the
user for each paper contributing to the connectedness measure. We
infer this interest from the set these papers belong to: 1 for Selected
papers, 3 for To Read, and 5 for Core. We do not make any distinction
between references and citations, as we consider both to be indicative
of relatedness.

The connectedness measure must be recomputed every time a pa-
per P is moved from one interesting set to another, because its weight
changes. However, this change affects only the papers that reference
or are cited by P. For computational efficiency, the connectedness mea-
sure is computed incrementally: when P moves to another set, its con-
tribution to the connectedness measure of its neighbors is incremented
by the difference between its previous weight and its new one.

7.2 Relevance Score
The relevance score of a paper is computed as the sum of its normal-
ized connectedness and its Adjusted Citation Count. We chose addi-
tion over multiplication because we consider high connectedness and



high citation counts to be enough on their own to make a paper rele-
vant. Indeed, a paper not well cited, but strongly connected to other
interesting papers could provide you pertinent insights, even though
this paper may not be useful to the research community at large. Sim-
ilarly, it is good to be aware of highly cited papers in your field, even
if they are only loosely connected to your current focus.

The relative weight of the normalized connectedness versus the Ad-
justed Citation Count is another free parameter in our relevance algo-
rithm. After testing our system on a set of papers related to our re-
search interests, we decided to keep this relative weight to one, as we
did not find any reason to favor one above the other. A better approach
would be to deploy our system with real users, and collect which pa-
pers they selected. We could then train a machine learning algorithm
on this data to find the parameters that lead to the best prediction,
hence bring interesting papers higher up on the Fringe.

7.3 Delayed Execution
Papers on the Fringe are sorted vertically by relevance score. Every
time the user selects a paper, or moves it to the To Read list or the
Core, the relevance scores are updated, and the order of papers on the
Fringe should change. However, these continuous updates may be dis-
tracting for users, especially if they are trying to read the Fringe from
top to bottom and selecting papers from it. Therefore we provide a
mechanism to delay the reordering of the Fringe by adding an ”update
Fringe” button. Users can still opt-in for continuous updates by ticking
a checkbox. To support the delayed execution of the relevance algo-
rithm, we maintain a queue of all the actions taken by the user since
the previous update, and empty this queue when the update button is
pressed.

8 VISUALIZATION

The relevance algorithm is a key component of PaperQuest, and we
believe that the main benefit of our tool is its ability to find and sort
papers based on all the papers you consider relevant, and not only one
— as is today the case with backward and forward search. Therefore
our visualization is organized around the suggestions of the algorithm.

8.1 Main View
A key decision of our design is to display paper titles in full, and to
show many of them on the Fringe. Reading titles is the first step of
the decision process, and the most efficient for filtering out the vast
majority of irrelevant papers. The imperfections of the relevance al-
gorithm make it necessary to display multiple titles at once, to let the
user skim quickly through a list of suggested paper titles. To this end,
we use spatial position to order papers in the Fringe, with the most
relevant items appearing at the top (Figure 6). This top-down ordering
corresponds to the reading direction in many cultures, which facilitates
skimming and intuitively conveys which papers are the most relevant.

Our visual layout is therefore quite different from the force-directed
node-link diagram commonly used to represent network data, such as
the one used by Borner et al. [1]. Node-link diagrams are very effec-
tive for understanding the topology of a network, but our task analysis
suggests that this is not particularly useful in the context of a litera-
ture review. That is why we do not display links between papers by
default: the user has to request them by clicking on a button. Instead,
we provide higher-level information on how connected a paper is to
the set of interesting papers, as explained below. Besides, a force-
directed node-link diagram does not afford a particular reading order,
so it could have been difficult for users to know where to start, or to
keep track of their progress — especially if the layout is being updated
as new papers come in and out.

The main view contains two other regions: the Core and the To
Read list (Figure 6). Users can move papers between these regions by
clicking the appropriate buttons in the contextual menu that appears
when hovering on a paper. The boundaries between regions can be
dragged, which allow users to give more screen real estate to the region
of their current focus. Papers are also aligned vertically in the Core
and the To Read list, to make it easier to draw links between them
and papers on the Fringe, as well as showing the full titles when these

views are expanded. The slight curvature of the Fringe is intended to
reinforce the conceptual design of a core surrounded by a fringe, so
that papers seem to move from the outside to the inside when they are
moved from right to left in the interface. The concavity could also
help reduce the number of overlaps when drawing a link between two
papers on the Fringe, although our current drawing technique does not
leverage this fully.

Users can select and deselect papers on the fringe simply by click-
ing on their titles. The selected papers appear in bold, and are moved
slightly to the left (Figure 6). Because we use the left click for selec-
tion, other actions must be performed via a contextual menu, such as
adding a paper to the To Read list. The reason why we gave prior-
ity to selection is that it is the basis for two important features of our
visualization: interactive fringe exploration and semantic zoom.

Selecting a paper on the Fringe signals to the algorithm that the user
may be interested in that paper, and might be interested in its neigh-
bors — based on our connectedness assumption. We offer the user
the possibility to update the Fringe automatically, taking into account
this new information to improve the prediction. The exact interaction
is as follows: when the user presses the mouse button on a paper, it
moves to the left and is shown as selected; when the user releases the
mouse button, the Fringe is updated, which often causes the newly se-
lected paper to move somewhere else in the Fringe. We implemented
this subtle two-step action to give maximum control to the user, and
avoid them being overwhelmed by multiple changes happening in the
interface simultaneously. For the same reason, we always stagger an-
imations: papers move first to their new position, then change color if
needed.

When users select papers, we consider that they have a higher de-
gree of interest in them. We apply the concept of Generalized Fisheye
introduced by Furnas [6], to show more information on the selected
papers than the non-selected ones. In our case, we show the list of the
authors, the conference and the publication year below the title (Fig-
ure 7a). Users can even choose to focus entirely on the selected papers,
and see their full abstracts, while the non-selected papers are shrunk
and disappear (Figure 7b). This sequence can be seen as a semantic
zoom, during which more and more information is revealed about the
selected papers. We chose to map the transition between the different
levels of zoom to the mouse wheel, which is often used for this pur-
pose. Since we do not limit the number of papers that users can select,
it is often the case that their full abstracts will not fit on one page.
Therefore, any further scrolling action at the maximal zoom level will
be interpreted as actual scrolling, and shifting the papers upward. The
user can scroll in the opposite direction to move back to the top of the
list, and keep scrolling to unzoom.

Fig. 7. Detail of some of PaperQuest’s functionality. a) In the first level
of semantic zoom, selected papers are highlighted and their metadata
shown, while the rest of the papers are shrunk and faded. b) At the next
level, the full abstract of selected papers is shown, and other papers
are hidden. c) Ctrl-click can be used to see the details on a paper on
demand in any view. d) The mouse hovers over a paper, highlighting it
and showing its menu; the “show links” option is enabled.

The combination of selection in one click and semantic zoom by



Fig. 6. The main interface of Paper Quest. The list of papers in the middle is the Fringe, at the top left is the To Read list, and at the bottom left
is the Core. The right pane is the Sidebar. Below the Fringe an update button is faded out, indicating the Fringe is up to date. Three papers have
been selected in the Fringe and three more are already present in the Core. The border of the Fringe and the border between the Core and the To
Read list can be dragged to adjust the views.

scrolling makes it very fast to access the metadata and the abstract of
papers of interest to the user. We also provide details-on-demand for
individual papers, by displaying their information in an overlay when
the user presses Ctrl and clicks on a paper title (Figure 7c). Finally,
users can open the ACM digital library entry for a given paper by
clicking on the list of authors, which is shown as a hyperlink. Users
can thus access the PDF of the paper, and any supplemental material
available.

In some cases, it is useful to know which paper cites or is cited by
others. Users can display all the links of a paper by clicking on the
appropriate button in the contextual menu (Figure 7d). We show links
as curved arcs as suggested by van den Elzen and van Wijk [15], with
the clockwise curvature indicating that the source makes reference to
the target. References and citations are easily distinguishable without
clutter from extra markers such as arrowheads. Only one paper at a
time can show its links, and only to papers that are visible in one of
the views.

8.2 Glyph Design

The algorithm combines internal and external citation counts, as well
as a custom connectedness measure, into a single score. Not mat-
ter how advanced this algorithm might be, it will always make wrong
predictions, or simply will not match the criteria of the user at a par-
ticular time. For this reason, we decouple the three quantitative pieces
of information available for each paper, and display them as a glyph to
the left of the paper title.

Because internal and external citation counts are semantically sim-
ilar, we encode them in the same way: as the area of a disk. It is
somewhat less effective than using, for instance, the length of a rect-
angle, which allows more accurate comparisons. However, our task
analysis suggests that exact judgments are not required in this con-
text: users simply need to quickly get a sense of how popular a give
paper is. Besides, representing papers with a disk is reminiscent of
node-link diagrams, and conveys the idea of treating the literature as a
network of papers. The area of the circles in the glyphs are not normal-
ized across publication years, but only between internal and external

citations. This way, the visual encoding provides slightly different in-
formation than the vertical sorting by the algorithm, which gives the
user a richer picture of the data. The exact citation counts, as well as
the normalized ones, are available on demand in a tooltip that appears
when hovering on the glyph.

We chose to encode the connectedness measure with luminance,
because this channel is nicely separable from the size channel. As ex-
plained above, we consider connectedness and citation counts as two
orthogonal metrics, but equally relevant. However, the number of dis-
tinguishable luminance levels seemed too small for our purposes: only
two to four, according to Ware [16]. We expected that four or five dis-
tinguishable bins would be useful, to separate the top papers from the
regular ones, and those from the only weakly connected ones. We also
had to make sure that our glyphs would be visible on the white back-
ground, which of course restricts the extent of the luminance scale
available. For these reasons, we decided to map the connectedness
measure to a sequential color scale with monotonically increasing lu-
minance, which we retrieved and adjusted from ColorBrewer3.

Our glyph is therefore made of two colored disks. We draw them
tangent to each other to form a single visual entity that encodes the rel-
evance of a particular paper (Figure 8a). The external citations disk is
always on the left side, which is clearly distinguishable from the inter-
nal citations disk on the right side, and allows comparisons with other
papers on the Fringe. This distinction is effective, but not particularly
intuitive. We added a very light shading to the internal citation disk to
convey the idea of centrality. This luminance difference was chosen to
be too small to interfere with any of the other bins in the color scale,
but enough to be perceptible in a side-by-side comparison in the glyph
itself.

We experimented with a variant of this glyph, in which internal and
external citations are represented by adjoined half disks, instead of
tangent full disks (Figure 8b). This ”half-moons” variant is more con-
cise than the ”butterfly” one, which in turn may allow more accurate
comparisons. After presenting the variants to several potential users,

3http://www.colorbrewer2.org/, by Cynthia Brewer and Mark
Harrower



Fig. 8. Two versions of the paper glyph to encode internal and external
citation counts. a) The “butterfly” variant consists of two disks side by
side. b) The “half-moons” are two half disks. The external citation count
is always displayed on the left.

we did not find any reason to favor one against the other, so we kept
both. An entry in the top-right menu let users specify their personal
preference.

8.3 Additional Views
We provide two linked views in a sidebar (Figure 6), to display other
facets of the information shown in the main view. First, a list of the
most frequent authors is shown, with the number of papers they co-
authored in parentheses. This list tells the user which authors are par-
ticularly active in the domain they are exploring. Only a few authors
appear more than once; but the list of authors who appear in exactly
one paper is too long to be displayed in its entirety. We sort with sev-
eral criteria. According to the idea of a generalized fisheye described
earlier, we promote authors of the papers that users have expressed in-
terest in by selecting them. We then give a higher weight to authors
that have published a paper with a high relevance score. Among the
authors of a given paper, we promote those that are more often first or
last authors.

A histogram at the bottom right corner of the screen shows aggre-
gate information on the publication years of the papers appearing in
the main view (Figure 6). Its purpose is two-fold: to provide a sense
of the popularity over time of the topic the user is currently exploring;
and to identify potential gaps in their set of Core and To Read papers,
compared to those that appear on the Fringe. Such a mismatch would
indicate that the user is not aware of a related subtrend in their domain.
Three checkboxes at the top of the sidebar let users define the set of
papers they want to see information on. By ticking multiple check-
boxes, users can aggregate multiple sets of papers, such as the Core
and the To Read list.

9 IMPLEMENTATION

One of our goals was to make a tool that could be useful in practice.
Creating a flexible system with simple but powerful interactions plays
a part in reaching this goal. We chose the web as a platform to reach
many people easily, and Data-Driven Documents, or D3 [2], to help us
implement our design, with the rest of the functionality hand-crafted
in JavaScript. We believe this combination of technologies enabled us
to get very close to our original vision, with HTML and CSS providing
a scaffolding for the application and an easy way to tweak the visual
design of some elements. We also use the typeahead.js library4 from
Twitter for the auto-complete enabled search box, which in turn uses
jQuery5.

9.1 Code Structure
When the application is run, a simple HTML structure is put in place
just so that the JavaScript libraries can run and take over the rendering
of the interface. After the libraries, the full dataset is loaded. A session
manager implemented on the browser’s Local Storage recovers any
state that was stored previously, if any. Only dynamic state is stored,
no paper metadata or derived attributes that can be recomputed are
saved. It also loads a global dictionary of configuration parameters for
the visualization, which determine things like the time taken for the
animations, good default values for the different view dimensions, etc.

The dataset is fed to the application as a JSON object, a dictionary
with papers indexed by DOI, where each paper is itself a dictionary
containing the original metadata: title, year, list of authors, abstract,

4https://twitter.github.io/typeahead.js/
5http://jquery.com/

list of citations and list of references. We also compute some derived
attributes for each paper, including its relevance score, and flags indi-
cating where in the three views it is located. To better encapsulate both
the static and dynamic data, we created a paper object which provides
utility functions, such as geometry helpers to determine the X and Y
position of a paper based on its current state.

Geometry computations happen take into account the current state
of papers and views, semantic zoom level, as well as configuration
parameters. They are used frequently as the interface gets updated
and re-painted, enabling a dynamic and responsive visualization that
adapts to events like changes in window size.

We also created a global object called P to standardize access to
the dataset. It can be used as a function to lookup a paper by DOI,
returning all its data and state. P can be queried to get the current lists
of papers in each view. It is effectively an abstraction layer that hides
the details of how the data is handled and cached from the higher level
code that implements the functionality. Its implementation relies on
an array that contains the papers the user has showed interest in, either
because they are selected in the fringe, or located in the To Read or
Core views. It also contains all papers one hop away from these in the
graph, which make up the non-selected fringe.

To establish the visible fringe, which consists of the elements of the
fringe that can be seen in the interface, first the relevance score of each
paper is updated using the algorithm described in Section 7, then the
papers are sorted by this value and the top ones are marked as visible,
as long as they fit on the screen. The papers are shown as a list with
a slight curvature that conforms to the curvature of the fringe view,
which is based on a circle with a large radius.

As the user interacts with the visualization its state changes. For
example, papers in the fringe can be selected, and there are three ref-
erences to papers in special states: one paper at a time can show its
links, including references and citations; one paper can be actively
highlighted by hovering over it, which also displays a menu; one paper
can be expanded to see its metadata and abstract, and this information
is actively shown until the user chooses to hide it. This state is stored
in a global dictionary which is also persisted when the user saves their
session.

The stats page was implemented separately, and while it uses the
same data, it also derives new values to display bar charts, scatterplots
and line plots, all of which are rendered using D3 directly.

9.2 Implementation Details

Most of the functionality for the different components of the inter-
face was implemented by hand, with two exceptions. First, the transi-
tions that happen when we add or remove papers and links are handled
neatly by D3, as well as all the animations. Second, the textbox that
lets users search for and add new papers by name is implemented using
typeahead.js from Twitter.

The views with draggable edges, glyphs, menus, sidebar, stats page,
and paper details overlay are relatively straightforward. Their imple-
mentation is based on listening to events in the browser and updating
the application state accordingly. A single drawing function takes care
of rendering everything according to the current state.

Semantic zoom in the Fringe is implemented by having a global
zoom level parameter that gets updated when the mouse wheel is
scrolled. Each discrete event of the wheel changes the zoom level
to one of three values: titles only, titles with metadata, and full details
including abstract. The last two expand papers that are selected, while
using a transformation matrix to shrink the other ones.

The curved links are implemented using a spline with basis inter-
polation between three consecutive points: source, midpoint and tar-
get. Source and target are given by the coordinates of respective paper
glyphs. The midpoint is computed by finding the middle point of the
segment defined by source and target and offsetting it orthogonally.
The offset amount is a function of a scaling parameter between 0 and
1, and the length of the segment, so that longer links will have a bigger
offset than shorter links.



10 RESULTS

Figure 6 shows the main screen of our system. As mentioned above,
we assumed that users already possess one or a few seed papers before-
hand, which are added to the Core by default. The following scenarios
illustrates two aspects of the workflow in PaperQuest. The first sce-
nario presents how users can move through the interface during the
different steps of their literature review; the second highlights how the
visualization encodings help users make better choices.

10.1 Scenario 1
Panagiota is a PhD student in the field of HCI. She has just finished
reading a couple papers for her literature review and now needs more
material. To find new papers, she goes to the PaperQuest website,
which shows her an overview of where she was at the end of her pre-
vious session (Figure 9). She can quickly see previous papers she has
read, the ones in her reading list, and an outdated list of papers in her
fringe of research. She marks as read the papers she has just finished
reading (Figure 10a), which sends them into the core region at the bot-
tom left of the interface. She then clicks the ”Update fringe” button
to get fresh recommendations of papers in her Fringe, and clicks on a
few with promising titles to mark them as selected (Figure 10b).

Using the mouse wheel she zooms into the fringe to see more detail.
The interface shows the metadata and abstract of her selected papers
(Figure 10c). After reading their abstracts she deselects a couple of pa-
pers from the list, zooms out, updates the fringe again and repeats the
process a few times. Once she is satisfied with her choices, she adds
her selected papers to the To Read list (Figure 10d). She then brews a
cup of coffee, gathers her courage, and gets back to her readings.

Fig. 9. A typical view of the interface after a user has been doing their
literature review. Some papers are in the To Read list, and some have
already been read.

10.2 Scenario 2
Fotis is in the process of doing a literature review for his CS544m
Project at UBC. He heard great things about a website called Pa-
perQuest so he is using it to help him find interesting papers. He has
already read a couple and has selected two more to read (Figure 11),
when suddenly he notices a recommendation for a paper very high
up on the list that strangely has few citations. Curious to understand
what is going on he displays the paper’s links, and sees that ”The buzz:
supporting user tailorability in awareness applications” cites 4 of the
papers he has already read and also the 2 that are in his To Read list
(Figure 12a).

Fig. 10. Scenario 1: navigating through the interface. a) Top left: a few
papers are moved from the To Read list to the Core. b) Top right: the
Fringe is updated and some papers selected. c) Bottom left: papers in
the Fringe are expanded with semantic zoom to read their abstracts. d)
Bottom right: papers are moved to the To Read list.

To clarify which papers they are, he drags the Fringe border to the
right so he can read the paper titles (Figure 12b). His curiosity piqued,
he decides to add the suggested paper to his To Read list (Figure 12c),
after which he expands it to see more details and start reading the
abstract (Figure 12d).

Fig. 11. A few papers have been added to the Core and to the To Read
lists. The third paper in the Fringe is odd because it has high relevance
but low citation count.

11 DISCUSSION

Based on our own interactions and preliminary reactions by col-
leagues, we believe there is good potential to make this a useful tool.
Our layout seems to support the common literature review workflow
well, and presents a lot of information together, which at least seems
to make the decision process more efficient. Ideally we would like to
have not only efficiency, but also added value, in the sense that a re-
searcher could identify relevant papers with our tool that they would



Fig. 12. Scenario 2: understanding the relevance of a paper. a) Top left:
showing the links of a paper to see its references and citations. b) Top
right: dragging the Fringe border to see the titles of papers in the Core.
c) Bottom left: moving the paper to the To Read list. d) Bottom right:
expanding the paper’s details to read the abstract.

miss otherwise. We think the encoding choices we made promote this
goal, but currently have no data to support this.

The biggest weakness we have identified is a problem with scale.
Each of our views supports up to a few dozen papers, mostly because
we are showing titles in a font size that should be comfortable to read,
which takes up considerable space. While this can be partly improved
by adding scrolling in the views, that idea does little to help showing
links to papers in the hidden part of the list, or an overview of the
data. Aggregation of elements should be considered, with the option
to expand the aggregated elements to see them in more detail at the
user’s request.

We think the approach we took to this problem works, even if there
are still things to fix and more functionality to implement. Having
all relevant information together when making a decision of what to
read next is extremely convenient, and enabling browsing of the full
publication space in a domain facilitates discovery. We found out that
many people conduct literature review in the same way, which was
unexpected because most of them developed a process by themselves.
Our interface supports this process naturally, and possibly extends it
in useful ways.

The tools chosen for our implementation were appropriate and ex-
tremely helpful. D3 simplifies many processes that would otherwise
be burdensome to implement, and as the system grows it also elimi-
nates much complexity that would make the code fragile. We learned
that the best way to see if an idea worked, when we were not sure
about it, was to implement it and test it directly. This usually could be
done quickly and promoted iteration, which we believe leads to better
design.

12 FUTURE WORK

We have many ideas of improvements and extensions of our visual-
ization. We would like to test more formally if the glyph encoding
is valuable to users, and if together with the links encoding they have
enough information to speed up their decision process of what to read.
Having them together in a single visualization is one of our main con-
tributions, so it would be interesting to know if they are helpful or not.

Improved filters and linked highlighting are the natural next steps in
our design, as they would add functionality to the side views. Relevant
papers should be highlighted when users hover over author names, or
the publication years in the histogram. Selecting a few authors could
filter the results of all views to show only their papers, and changing
the limits of the year range could give the user only publications for
that period. In this way, a user that identifies they have read few recent

papers could focus only on those and fill a gap in their literature review.
Even enabling regular scrolling in the Fringe view could be used as a
simple filter: if selected papers are kept around, but others are scrolled
out of view, the user could move to the bottom of the recommendations
list to explore more results.

The relevance algorithm also needs more work. A machine learn-
ing approach to set the parameters could be very useful. A short-term
alternative is to give control to advanced users so that they can tweak
the parameters of the algorithm themselves. This could be achieved
by clarifying the contents of the statistics page to users and making it
more functional, so that they could determine their own cut-off thresh-
olds and other normalization values. A slider in the main view could
also be used to dynamically set the relative weight of citations counts
and the connectedness measure in the computation of the relevance
score.

Adding more sensemaking functionality would be an interesting
challenge. This includes giving users the ability to give simple ratings
to the papers they read, at a minimum starring a paper or discarding it.
Additionally we would like to extend the functionality in the Core by
allowing users to see a full network overview of the papers they have
read and how they connect, with the possibility to label papers and to
group them into meaningful categories.

To address the scale problem we would explore the idea of aggre-
gating all links between the relevant paper and different regions, using
line thickness to encode the number of links that are being aggregated.
Besides aggregation, it would be interesting to design other represen-
tations of papers that use less pixels. While this is difficult to do in
the fringe, where full paper titles cannot be removed without impact-
ing the decision process of the user, we could use categories to cluster
similar papers together, and show only one or two main keywords for
a paper so that the user can remember which one it is. For example,
after reading our report, it might be easily recognized by just the ”Pa-
perQuest” keyword instead of the full title. In this way we could at
least offer more room for papers in the To Read and Core sections.

More datasets is another important goal. We plan on updating the
CiteVis dataset with paper abstract information and adding it to the
tool. Including multiple datasets would not only make the tool use-
ful for a wider audience, but also allow us to start playing with inter-
dataset information, like references to publications in other domains. It
will probably be necessary to change the way datasets are fed into the
system, and instead use a proper database server to be able to scale up
to many users and collect their usage information. This in turn would
enable us to include things like recommendations based on what other
people read.

13 CONCLUSION

We designed and implemented a tool to support the process of a lit-
erature review, and in particular the task of deciding which paper to
read next. Our main contribution is in presenting in a clear way just
as much information as useful, from a large network of papers with all
their metadata. The three regions of the main view afford a multi-level
decision process, from selecting papers on the Fringe, to adding them
to a To Read list, to organizing them in the Core.

We use a variety of visualization idioms to achieve our goals. Re-
sponsive interactions and transitions help create a flexible environment
suitable for browsing and discovery. A carefully designed glyph en-
codes information on each paper in the dataset, and provides a visible
rationale for the decisions of our custom relevance algorithm. Curved
links indicate connections between papers to easily identify references
and citations. A sidebar shows other facets of the data, such as the
most frequent authors and the years of publication, and will be used
for linked highlighting and filtering in the future.

Our system has a scale limitation that needs to be addressed: only
a few dozen papers can be displayed, which limits its usefulness for
a full literature review. However, the first impressions of potential
users have been positive, as they recognized the benefits of a smarter
and richer exploration of the literature than what is currently avail-
able through search engines and digital libraries. We plan to improve



PaperQuest to make it more useful and robust, and deploy it for real-
world usage.
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