Lecture 9: Item Reduction Methods

Information Visualization CPSC 533C, Fall 2011

Tamara Munzner

UBC Computer Science

Wed, 5 October 2011

Required Readings

Chapter 7: Item Reduction Methods

Further Reading

Space-Scale Diagrams: Understanding Multiscale Interfaces George Furnas and Ben Bederson, Proc SIGCHI 95.

Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics Ben Bederson, and James D Hollan, Proc UIST 94.

Smooth and Efficient Zooming and Panning. Jack J. van Wijk and Wim A.A. Nuij, Proc. InfoVis 2003, p. 15-22

SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Catherine Plaisant, Jesse Grosjean, and Ben B. Bederson. Proc. InfoVis 2002.

The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.

Data Reduction

- how to reduce amount of stuff to draw?
 - crosscuts view composition considerations
- item reduction
 - this time
 - rows of table
- attribute reduction
 - next time
 - columns of table

Item Reduction Methods

- filtering and navigation
 - leave some things out
- aggregation
 - merge things together
- overviews
 - temporal through nav
 - separate dedicated view
 - focus+context
 - selective filtering
 - geometric distortion
 - distortion costs/benefits

Filtering and Navigation

- filter: choose which items to show/hide
 - widgets: sliders, buttons, lists
- navigation: filter based on viewpoint
 - unconstrained / constrained nav
 - constrained: anim trans to new viewpoint
 - geometric / semantic zoom
 - straightforward / nonliteral

Space-Scale Diagrams

reasoning about navigation and trajectories

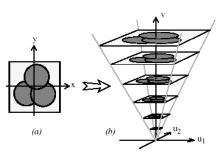
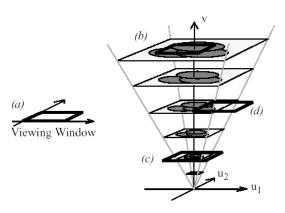
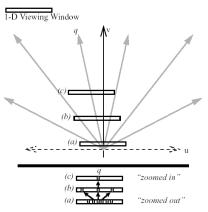
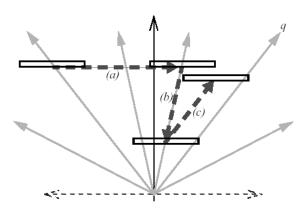



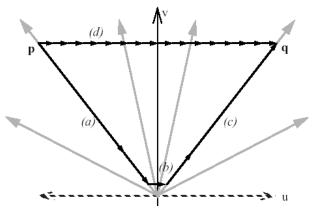
Figure 1. The basic construction of a Space-Scale diagram from a 2D picture.


[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]

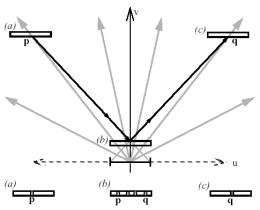
Viewing Window


[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]

1D Version

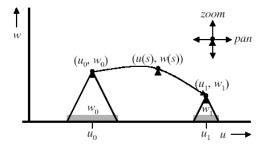

[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]

Pan-Zoom Trajectories


[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]

Shortest Path

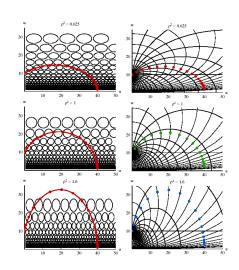
[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI $^{\prime}95.$]


Shortest Path, Details

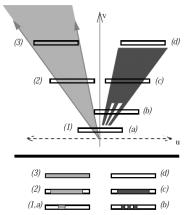
[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]

Smooth and Efficient Zooming

- uw space: u = pan, w = zoom
 - horiz axis: cross-section through objects
 - point = camera at height w above object
 - path = camera path



Smooth and Efficient Zooming and Panning. Jack J. van Wijk and Wim A.A. Nuij, Proc. InfoVis 2003, p. 15-22

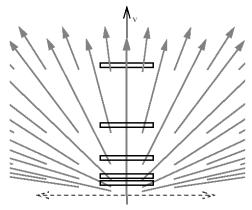

Optimal Paths Through Space

- at each step, cross same number of ellipses
- cross minimal number of ellipses total

Smooth and Efficient Zooming and Panning. Jack J. van Wijk and Wim A.A. Nuij, Proc. InfoVis 2003, p. 15-22

Semantic Zooming

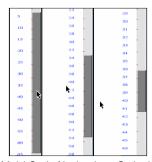
[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]


Pad++

■ "infinitely" zoomable user interface (ZUI)

[Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics. Bederson and Hollan, Proc UIST 94]

Multiscale Display


Space-Scale Diagrams: Understanding Multiscale Interfaces

George Furnas and Ben Bederson, Proc SIGCHI '95.

www.cs.umd.edu/hcil/pad++/papers/chi-95-spacescale/chi-95-spacescale.pdf

OrthoZoom: Multiscale Navigation

- scale/zoom ratio target
 - index of difficulty: ID = log(1 + D/W)
 - lacksquare D = target distance, W = target size
- control area larger than graphical representation
 - zoom factor is orthogonal cursor-slider distance

[OrthoZoom Scroller: 1D Multi-Scale Navigation. Catherine Appert and Jean-Daniel Fekete. Proc. SIGCHI 06, pp 21-30.]

OrthoZoom

multi-scale table of contents [video]

[OrthoZoom Scroller: 1D Multi-Scale Navigation. Catherine Appert and Jean-Daniel Fekete. Proc. SIGCHI 06, pp 21-30.]

Aggregation

- combine items (vs. eliminate them w/ filtering)
- derived attributes: min/max/avg/sum (SQL)
- challenge: avoid averaging out signal

Overviews

- strategies: both filter and aggregate
 - simple: geometric zoomout
 - complex: aggregation
- methods
 - temporal through nav
 - separate dedicated view
 - embedded/integrated focus+context

Survey

- taxonomy
 - overview+detail: spatial separation
 - zooming: temporal separation
 - focus+context: integrated/embedded
 - cue-based: selectively highlight/suppress
 - crosscutting
 - differs from book taxonomy
- structure
 - describe technique
 - empirical study results
 - low-level task: target acquisition
 - high-level task: explore search space

Overview+Detail

Overview+Detail Issues

- linked navigation
 - shortcut navigation, thumbnail to detail
 - explore overview without changing detail
 - if fully synchronized could not explore
 - detail changes immediately shown in overview
- their defn: lens as O+D
 - since O and D separated in z/depth
 - nonstandard usage; I consider F+C

Zooming

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Zooming

- geometric zooming
 - hard to make intuitive zoomout control
- semantic zooming
 - different representations at different scales
 - zoomable user interfaces (ZUIs)
- space-scale diagrams
- challenge: stability

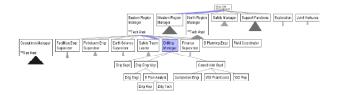
Focus+Context

integrate focus and context in single view

Focus+Context

- selective filtering
- geometric distortion
- distortion: costs/benefits

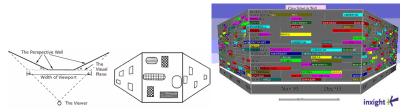
F+C Formalism: Degree of Interest


- DOI: I(x) D(x,y)
 - I: (a priori) interest
 - D: distance, semantic or spatial
 - x: data element
 - y: current focus
- DOI for selective presentation vs. for distortion
- infer DOI through interaction vs. explicit selection
- single vs. multiple foci

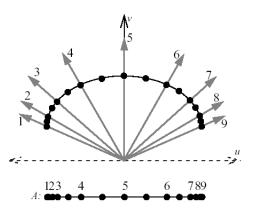
[A Review and Taxonomy of Distortion-Oriented Presentation Techniques. Leung and Apperley, ACM ToCHI 1(2):126-160, Jun 1994.]

F+C Elision: SpaceTree

- focus+context tree (like DOITrees Revisited)
 - selective filtering w/ elision


semantic zooming / aggregation

demo


F+C Distortion: 3D Perspective

- move part of surface closer to eye
 - Perspective Wall

[A review of overview+detail, zooming, and focus+context interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41(1), 2008. From Perspective Wall, Mackinlay Robertson and Card 1991]

F+C Distortion: Fisheye

Space-Scale Diagrams: Understanding Multiscale Interfaces George Furnas and Ben Bederson, Proc SIGCHI '95. www.cs.umd.edu/hcil/pad++/papers/chi-95-spacescale/chi-95-spacescale.pdf

2D Hyperbolic Trees

- fisheye effect from hyperbolic geometry
 - video: open-video.org/details.php?videoid=4567

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.]

Distortion Challenges

- unsuitable if must make relative spatial judgements (length)
 - graph topology as least problematic case
- overhead of tracking distortion
 - constrained and predictable maybe safest
- how to visually communicate distortion
 - gridlines, shading
- target acquisition problem
 - lens displacing items away from screen loction
- mixed results comparing to separate views, temporal nav
- fisheye followup: concern with enthusiasm over distortion
 - what is being shown: selective filtering
 - how it is shown: distortion as one possibility

F+C Without Distortion

specialized hardware

[A review of overview+detail, zooming, and focus+context interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41(1), 2008. From: Baudisch 1992.]

Reading For Next Time

Chapter 8: Attribute Reduction Methods

Glimmer: Multilevel MDS on the GPU. Stephen Ingram, Tamara Munzner and Marc Olano. IEEE TVCG, 15(2):249-261, Mar/Apr 2009.

Reminders

- Project meetings due 10/19
 - two weeks from today
- Office hours today after class (5-6)
 - or schedule specific meeting time by email