Lecture 8: Multiple View Methods

Information Visualization CPSC 533C, Fall 2011

Tamara Munzner

UBC Computer Science

Mon, 3 October 2011

Required Readings

Chapter 6: Multiple View Methods

The Visual Design and Control of Trellis Display R. A. Becker, W. S. Cleveland, and M. J. Shyu (1996). Journal of Computational and Statistical Graphics, 5:123-155.

Further Reading

Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Aaron Barsky, Tamara Munzner, Jennifer L. Gardy, and Robert Kincaid. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6):1253-1260, 2008.

Building Highly-Coordinated Visualizations In Improvise. Chris Weaver. Proc. InfoVis 2004. p 159-166.

Exploring High-D Spaces with Multiform Matrices and Small Multiples. Alan MacEachren, Xiping Dai, Frank Hardisty, Diansheng Guo, and Gene Lengerich. Proc InfoVis 2003. p 31-38.

Configuring Hierarchical Layouts to Address Research Questions. Adrian Slingsby, Jason Dykes, and Jo Wood. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).

Multiple View Methods

linking/coordination choices

- linked highlighting
 - is contiguous in one view distributed in another?
- linked navigation

view choices

- encoding: same or multiform
- dataset: same or small multiple
- data: all or subset (overview/detail)
- spatial ordering of views
- many combinations possible

Small Multiples vs Animation

[Barsky et al. Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Proc. InfoVis 2008. p 1253-1260.]

CMV Example: Visual Search Engine

[VSE from Boukhelfia, Roberts, and Rodgers, Figure 3 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

CMV Example: cdv

[cdv from Dykes, Figure 2 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

CMV Example: CommonGIS

[CommonGIS from Andrienko and Andrienko, Figure 4 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

Replace, Replicate, Overlay

- when to do which
- design tradeoffs
 - always replace: too much reliance on memory
 - always replicate: too many windows
 - always overlay: too much clutter in single window

Architectural Issues

must play nicely with other views

- rendering, preprocessing, responding to commands
- most issues also true for scalability of single view
 - guaranteed response time independent of dataset size
- loose confederation
 - multithreaded, each component can work in background
- tighter confederation: return control to master regularly (TJ,H3)
 - divide work into pieces, enqueue
 - continue serving queue when control is returned

Improvise

tightly integrated coordination approach

- components with many external control capabilities
- live properties
 - value slots, ports
 - change in response to user action
 - naive approaches fall into cycles

[Fig 1. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Coordinating Axes

scatterplot from components

[Fig 5. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Coordinating Multiple Scatterplots

sync horizontal but not vertical scrolling

[Fig 6. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Example: Complex Application

[Fig 4. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Video

building up coordination

- encoding: same or multiform
- dataset: same or small multiple
- data: all or subset (overview/detail)
- background updating of views (upper left dot)
- list views for search coupled with other multiform views
- coordination analysis (controls/variables)
- selection decoupled from data

 $[\ http://www.cs.ou.edu/\ weaver/academic/publications/weaver-2004a-movie.zip$

Critique

strengths

sophisticated and powerful approach to coordination

weaknesses

large learning curve to build new apps

[Fig 2. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Multiform Matrices and Small Multiples

- univariate exploration: small multiples
- bivariate exploration: matrices (SPLOM and other)
- encoding: same or multiform
- dataset: same or small multiple
- techniques
 - juxtaposition
 - sorting/ordering
 - manipulation
 - linking multiple bivariate views

[MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small Multiples. Proc InfoVis 2003, p 31-38.]

Multiform Bivariate Small Multiple

- common variable: per capita income
- per-column variables: type of cancer mortality
- per-row forms: scatterplot, choropleth/thematic map
- left bright green: high income, low cervical cancer
 - hypoth: not screened
- right dark green: low income, high breast cancer

hypoth: late childbearing

[Fig 3. MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small Multiples. Proc InfoVis 2003, p 31-38.]

Multiform Bivariate Matrix

scatterplots/maps, histograms along diagonal

- per-col vars: mortality, early detection, recent screening
- univariate map var: screening facility availability

[MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small Multiples. Proc InfoVis 2003, p 31-38.]

Spacefill Form

- linked highlight of low doctor ratio counties from scatterplot
- spacefill shows it's roughly half the items

[Exploring High-D Spaces with Multiform Matrices and Small Multiples. MacEachren et al, Proc. InfoVis 2003.]

Sorting/Ordering and Linking

sorting/ordering

- manual: direct manipulation from user
- automatic: conditional entropy metric
- automatic: hierarchical clustering to find interesting
- linking
 - highlighting
 - many others
 - background color, subspace, conditioning, ...
 - conditioning: filter in/out of given range on another var
- video
 - InfoVis 2003 DVD

Automatic Dotplot Ordering: Trellis

[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155 1996]

Trellis Structure

conditioning/trellising: choose structure

- pick how to subdivide into panels
- pick x/y axes for indiv panels
- explore space with different choices
 - multiple conditioning
- ordering
 - large-scale: between panels
 - small-scale: within panels
 - main-effects: sort by group median
 - derived space, from categorical to ordered

Confirming Hypothesis

dataset error with Morris switched?

- old trellis: yield against variety given year/site
- new trellis: yield against site and year given variety
 - exploration suggested by previous main-effects ordering

[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155 1996]

	0	193	2	•	1	931	
Wisconsin No. 29					•		
No. 457				- 0-			
Glabron							
Peasand							
No. 475							
Manchuria	•						
Svansota							
			Cro	ekston			
Trebi							
Wisconsin No. 38					· · · · ·		
No. 457 Glateon							
Peatland							
Velvet							
Manchuria							
No. 462							
Svansota							
			M	OTTS			
Wisconsin No. 38							
No. 457	henner	mmn	hmom			mommor	
Glabron							
Velvet				A			
No, 475				0 -			
Manchuria No. 462							
Svansota							
	University Farm						
Trebi							
WISCONSIN NO. 395		-					
Glabron							
Peatland							
No. 475							
Manchuria							
Svansota							
		Duluth					
Trebi	imme		·••	-		mommore	
Wisconsin No. 38	h						
Glabron							
Peatland	h						
No. 475							
Manchuria	h						
No. 462 Svansota							
Svenovia	Grand Bapids						
Trebi			- Turn				
Wisconsin No. 38							
No. 457 Glahron	1	· · · · · · · · · · · · · · · · · · ·					
Peatland							
Velvet	1						
N0, 475 Manchuria							
No. 462	hanne						
Svansota	t-0						
					-		
	2	v	30	40	50	00	

Barley Yield (bushels/acre)

Partial Residuals

fixed dataset, Morris data switched
 explicitly show differences

 take means into account
 line is 10% trimmed mean (toss outliers)

[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155 1996]

Differences of Barley Yield (bushels/acre)

Critique

Critique

- careful attention to statistics and perception
- finding signals in noisy data
 - trends, outliers
- exploratory data analysis (EDA)
 - Tukey work fundamental, Cleveland continues

HiVE: Conditioning

reconfigure conditioning hierarchies to explore data space

- treemaps as spacefilling rectangular layouts
 - each rectangle is conditioned subset of data
 - nested graphical summaries
 - size, shape, color used to show subset properties
 - ordered by conditioning variable
- dimensional stacking:
 - discretization and recursive embedding of dimensions

[Fig 1. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]

HiVE Example: London Property

- top split: house type. next: neighborhood. next: time
- color: price variance. size: number of sales
- resulting patterns:
 - between neighborhood have different house distributions
 - within neighborhoods have similar prices

[Fig 7a. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]

HiVE Example: London Property

- top split: neighborhood. next: house type. next: sale time (year). next: sale time (month).
- color: average price. size: fixed.
- resulting pattern: expensive neighborhoods near center

[Fig 2c. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]

HiVE Video

Critique

- very thoughtful analysis
- prescriptive guidelines
- references backing up arguments

Reading For Next Time

Chapter 7: Item Reduction Methods

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.