Lecture 8: Multiple View Methods

 Information Visualization CPSC 533C, Fall 2011Tamara Munzner
UBC Computer Science

Mon, 3 October 2011

Required Readings

Chapter 6: Multiple View Methods
The Visual Design and Control of Trellis Display R. A. Becker, W. S. Cleveland, and M. J. Shyu (1996). Journal of Computational and Statistical Graphics, 5:123-155.

Further Reading

Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Aaron Barsky, Tamara Munzner, Jennifer L. Gardy, and Robert Kincaid. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6):1253-1260, 2008.

Building Highly-Coordinated Visualizations In Improvise. Chris Weaver. Proc. InfoVis 2004. p 159-166.

Exploring High-D Spaces with Multiform Matrices and Small Multiples. Alan MacEachren, Xiping Dai, Frank Hardisty, Diansheng Guo, and Gene Lengerich. Proc InfoVis 2003. p 31-38.

Configuring Hierarchical Layouts to Address Research Questions. Adrian Slingsby, Jason Dykes, and Jo Wood. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).

Multiple View Methods

■ linking/coordination choices
■ linked highlighting

- is contiguous in one view distributed in another?
- linked navigation

■ view choices
■ encoding: same or multiform

- dataset: same or small multiple
- data: all or subset (overview/detail)
- spatial ordering of views
- many combinations possible

Small Multiples vs Animation

[Barsky et al. Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Proc. InfoVis 2008. p 1253-1260.]

CMV Example: Visual Search Engine

[VSE from Boukhelfia, Roberts, and Rodgers, Figure 3 of State of the Art: Coordinated \& Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

CMV Example: cdv

[cdv from Dykes, Figure 2 of State of the Art: Coordinated \& Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

CMV Example: CommonGIS

[CommonGIS from Andrienko and Andrienko, Figure 4 of State of the Art: Coordinated \& Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

Replace, Replicate, Overlay

- when to do which
- design tradeoffs

■ always replace: too much reliance on memory

- always replicate: too many windows

■ always overlay: too much clutter in single window

Architectural Issues

■ must play nicely with other views
■ rendering, preprocessing, responding to commands

- most issues also true for scalability of single view
- guaranteed response time independent of dataset size

■ loose confederation

- multithreaded, each component can work in background

■ tighter confederation: return control to master regularly (TJ,H3)

- divide work into pieces, enqueue
- continue serving queue when control is returned

Improvise

■ tightly integrated coordination approach

- components with many external control capabilities

■ live properties
■ value slots, ports
■ change in response to user action

- naive approaches fall into cycles

Fig 1. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]

Coordinating Axes

- scatterplot from components

[Fig 5. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]

Coordinating Multiple Scatterplots

■ sync horizontal but not vertical scrolling

[Fig 6. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Example: Complex Application

Untitled
Fig 4. Weaver. Building Highly-Coordinated Visualizations In Improvise.
Proc. InfoVis 2004, p. 159-166]

Video

■ building up coordination
■ encoding: same or multiform

- dataset: same or small multiple

■ data: all or subset (overview/detail)
$■$ background updating of views (upper left dot)
■ list views for search coupled with other multiform views
■ coordination analysis (controls/variables)

- selection decoupled from data
[http://www.cs.ou.edu/ weaver/academic/publications/weaver-2004amovie.zip
]

Critique

- strengths

■ sophisticated and powerful approach to coordination
■ weaknesses

- large learning curve to build new apps

[Fig 2. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]

Multiform Matrices and Small Multiples

■ univariate exploration: small multiples
■ bivariate exploration: matrices (SPLOM and other)
■ encoding: same or multiform
■ dataset: same or small multiple

- techniques

■ juxtaposition

- sorting/ordering
- manipulation
- linking multiple bivariate views
[MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small Multiples. Proc InfoVis 2003, p 31-38.]

Multiform Bivariate Small Multiple

■ common variable: per capita income

- per-column variables: type of cancer mortality

■ per-row forms: scatterplot, choropleth/thematic map
■ left bright green: high income, low cervical cancer ■ hypoth: not screened
■ right dark green: low income, high breast cancer
■ hypoth: late childbearing

[Fig 3. MacEachren et al. Exploring High-D Spaces with Multiform Matrices and

Multiform Bivariate Matrix

■ scatterplots/maps, histograms along diagonal
■ per-col vars: mortality, early detection, recent screening
■ univariate map var: screening facility availability

[MacEachren et al. Exploring High-D Spaces with Multiform Matrices and Small Multiples. Proc InfoVis 2003, p 31-38.]

Spacefill Form

■ linked highlight of low doctor ratio counties from scatterplot
■ spacefill shows it's roughly half the items

[Exploring High-D Spaces with Multiform Matrices and Small Multiples. MacEachren et al, Proc. InfoVis 2003.]

Sorting/Ordering and Linking

■ sorting/ordering
■ manual: direct manipulation from user
■ automatic: conditional entropy metric

- automatic: hierarchical clustering to find interesting
- linking

■ highlighting

- many others
- background color, subspace, conditioning, ...

■ conditioning: filter in/out of given range on another var

■ video
■ InfoVis 2003 DVD

Automatic Dotplot Ordering: Trellis

use group median

[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155 1996]

Trellis Structure

■ conditioning/trellising: choose structure

- pick how to subdivide into panels
- pick x / y axes for indiv panels

■ explore space with different choices

- multiple conditioning
- ordering
- large-scale: between panels

■ small-scale: within panels

- main-effects: sort by group median
- derived space, from categorical to ordered

Confirming Hypothesis

■ dataset error with Morris switched?

■ old trellis: yield against variety given year/site

■ new trellis: yield against site and year given variety

- exploration suggested by previous main-effects ordering
[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155 1996]

Partial Residuals

■ fixed dataset, Morris data switched

- explicitly show differences
- take means into account
- line is 10% trimmed mean (toss outliers)
[The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155 1996]

Critique

Critique

- careful attention to statistics and perception
- finding signals in noisy data
- trends, outliers
- exploratory data analysis (EDA)

■ Tukey work fundamental, Cleveland continues

HiVE: Conditioning

■ reconfigure conditioning hierarchies to explore data space
■ treemaps as spacefilling rectangular layouts
■ each rectangle is conditioned subset of data
■ nested graphical summaries
■ size, shape, color used to show subset properties

- ordered by conditioning variable

■ dimensional stacking:

- discretization and recursive embedding of dimensions

[Fig 1. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]

HiVE Example: London Property

■ top split: house type. next: neighborhood. next: time
■ color: price variance. size: number of sales

- resulting patterns:

■ between neighborhood have different house distributions

- within neighborhoods have similar prices

[Fig 7a. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]

HiVE Example: London Property

■ top split: neighborhood. next: house type. next: sale time (year). next: sale time (month).
■ color: average price. size: fixed.
■ resulting pattern: expensive neighborhoods near center

[Fig 2c. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]

HiVE Video

Critique

■ very thoughtful analysis

- prescriptive guidelines

■ references backing up arguments

Reading For Next Time

Chapter 7: Item Reduction Methods
A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

