Lecture 5: Visual Encoding Principles
 Information Visualization
 CPSC 533C, Fall 2011

Tamara Munzner
UBC Computer Science

Wed, 21 September 2011

Required Readings

Chapter 3: Visual Encoding Principles
(this time: first 25 pages, Sec 3.1-3.4)
(next time: last 11 pages, Sec 3.5)
Representing Colors as Three Numbers, Maureen Stone, IEEE CG\&A 25(4):78-85, Jul 2005.

Further Reading

The Psychophysics of Sensory Function. S. S. Stevens, Sensory Communication, MIT Press, 1961, pp 1-33.

Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models. William S. Cleveland, Robert McGill, J. Am. Stat. Assoc. 79:387, pp. 531-554, 1984.

Automating the Design of Graphical Presentations of Relational Information. Jock Mackinlay, ACM Transaction on Graphics, vol. 5, no. 2, April 1986, pp. 110-141.
Semiology of Graphics. Jacques Bertin, Gauthier-Villars 1967, EHESS 1998

The Grammar of Graphics. Leland Wilkinson, Springer-Verlag 1999

Further Reading

Stone. Color In Information Display. IEEE Visualization 2006
Course Notes. http://www.stonesc.com/Vis06
A Field Guide To Digital Color, Maureen Stone, AK Peters 2003.
Tufte, Envisioning Information. Chapter 5: Color and Information
Ware, Information Visualization: Perception for Design:
Ch 3: Lightness, Brightness, Contrast, and Constancy
Ch 4: Color
Ch 5: Visual Attention and Information That Pops Out
Ch 6: Static and Moving Patterns
Ch 8: Space Perception and the Display of Data in Space

Relative vs Absolute Perception: Length

■ Weber's Law: relative judgements

- ratio of increment threshold to background intensity is constant

$$
\frac{\Delta I}{l}=K
$$

■ filled rectangles vs white rectangles

Relative vs Absolute Perception: Lightness

[Edward H. Adelson, http://persci.mit.edu/_media/gallery/checkershadow_double_full.jpg]

Relative vs Absolute Perception: Color

[Purves. http://www.purveslab.net/seeforyourself/]

Relative vs Absolute Perception: Color

[Purves. http://www.purveslab.net/seeforyourself/]

Image Theory
－marks ：geometric primitives
－points \because ：
－limes MN L
－areas

－visual channels：control appearance of marks
－position
horizontal $4 . H$ ，vertical E ，both $\because: 0$
－color
－tilt \quad－ －shape＊＊ 4
－size • • ロ ロ ロ サ

Visual Encoding

- analyze as combination of marks and channels showing abstract data dimensions

1: vertical position

2: vertical
position, horizontal position

3: vertical position, horizontal position, color

4: vertical position, horizontal position, color, size
make: line mank:point markipoint mark: point

Visual Channel Types and Rankings
what/where
How much

Visual Channel Types and Rankings

What/where How much
planar position \therefore color hue II shape $+0 \square \Delta L$ stipple pattern

Visual Channel Types and Rankings
what/where
planar position color hue n shape $+O \square \Delta L$ stipple pattern 프브N

How much
position en common scale $1 \rightarrow-1$ position on unaligned scale length C(D) size) tilt, angle $1 / 1 \quad \vee \vee \vee$ area (2D size) curvature 1) 25 volume (3D size) lightness black/white color saturation stipple density

Visual Channel Types and Rankings

Categorical
what/where
planar position $\because a$ color hue II shape $+O \square \Delta L$ stipple pattern E:- VIC

How much
position on commonscale $\longrightarrow-1$
position on unaligned scale length CID size) tilt, angle $1 / / \mathrm{V}, ~ \vee$ area (2D size) curvature $1, \gg$ volume (3D size) ail al lightness black/white color saturation stipple density

Visual Channel Types and Rankings

Categorical
what/where
planar position \because color hue - I shape $+O \square \Delta L$ stipple pattern En:
ordered: ordinal/Quantitative How much
position on common scale $1 \rightarrow-1$ position on unaligned scale length C(D size) $=-$ tilt, angle $1 / / \mathrm{V}, ~$ area (2D size) curvature 1) 2 volume (3D size) lightness black/white color saturation stipple density

Visual Channel Types and Rankings

Categorical
What/where
planar position \because color hue n In shape $+O \square \Delta L$ stipple pattern Er:

Grouping
containment (2D) $\quad \stackrel{0}{\bullet}$
Connection (ID) -.
Similarity (other channels)
Proximity (position) $\quad: \because$
ordered: ordinal/Qvantitative How much
position en common scale $1 \rightarrow-1$ position on unaligned scale length C(D) size) - tilt, angle $1 / /$, $V \vee V$ area (2D size) curvature $1, \gg$ volume (3D size) lightness blacl/white

- color saturation
- stipple density

Visual Channel Types and Rankings

Categorical
what/where
planar position \because color hue - II shape $+O \square \Delta L$
stipple pattern Fin=
Relations, same Category Grouping
containment (2D) 0
Connection (1D) -
Similarity (othe rchannels)
Proximity (position) $\quad \therefore \because$
ordered: ordinal/Quantitative How much
position en common scale $\rightarrow-1$ position on unaligned scale length C(D size) tilt, angle $1 / / \mathrm{V}, ~$ area (2D size) curvature 1, > 5 volume (3D size) lightness blach/white color saturation - stipple density

Only Planar Position Works For All!

Categorical
What/where
planer position
color hue
shape $+O \square \Delta L$
stipple pattern Bi= WIC
Relations, same Category
Grouping
containment (2D) $\quad \square$
Connection (ID) -
Similarity (other channels)
Proximity (position) : :
ordered: ordinal/Qvantitative
How much
position on common scale position on unaligned scale length CiV size) $=\rightarrow$ tilt, angle 1// area (2D size) curvature volume (3D size) lightness blacl/white
color saturation stipple density

Ranking Differs For All Other Channels

Categorical
what/where
planar position $\cdot \cdot \cdot$
ordered: ordinal/Quantitative How much
position on commons scale $1-\infty-1$
position on unalisend scale tor
length (ID size) - -
tilt, angle 1// area (2D size)
curvature
volume (3D size)
(1))
lightness blach/white
color saturation
stipple density
$19 / 55$

Grouping Channels

Expressiveness and Effectiveness

- expressiveness principle

■ pick visual channel to express all of and only information in dataset
■ effectiveness principle
■ ranking of channel should match importance of attribute

■ what criteria determine channel ranks?
■ accuracy, discriminability, separability, popout

- grouping precedence

Accuracy

Intensity

Discriminability

■ limits on available dynamic range

Separability vs. Integrality

Separability vs. Integrality

position
hue (color)
fully separable

Separability vs. Integrality

fully separable some $\begin{aligned} & \text { interference }\end{aligned}$
difficult to discriminate
small items
2 groups each 2 groups each:

Separability vs. Integrality

position
hue (color) hue (color)

| fully separable some | some/significant |
| :--- | :--- | :--- |
| interference | interference |

size: width
size: height
some/significant interference integral pera. (planar size)

2 groups each 2 groups each: 3 groups

Separability vs. Integrality

Separability vs. Integrality

Separability vs.
Integrality

position
hue (color) hue (color)

Visual Popout

Visual Popout

Visual Popout

■ parallelism: independent of distractor count

Visual Popout

Visual Popout

■ speed depends on: which channel, difference from surroundings

■ 'sufficiently different' is context dependent

Popout Channels：Many But Not All

$$
\begin{aligned}
& \text { - - - - ュー = ーロー L + L L L L }
\end{aligned}
$$

Popout Limits

- combination searches are serial

■ exception: a few pairs

Visual Channel Types and Rankings

Categorical
what/where
planar position \because color hue - II shape $+O \square \Delta L$
stipple pattern Fin=
Relations, Same Category Grouping
containment (2D) 0
Connection (1D) -
Similarity (othe rchannels)
Proximity (position) $\quad \therefore \because$
ordered: ordinal/Quantitative How much
position on common scale $\rightarrow-1$ position on unaligned scale length CID size) tilt, angle $1 / / \mathrm{V}, ~$ area (2D size) curvature 1, > 5 volume (3D size) lightness blacl/white color saturation - stipple density

Grouping: Precedence Not Effectiveness

■ all channels effective; rank is order of precedence

proximity

Grouping: Precedence Not Effectiveness

■ all channels effective; rank is order of precedence

proximity similarity (color) sim (size) sim (shape)

containment overrides connection

Power of Planar Position

Categorical
what/where
planer position
color hue
shape + OM AL
stipple pattern E -ill
Relations, Same Category
Grouping
containment (2D) $\because \because 0$
Connection (10) ©.
Similarity (other channels)
Proximity (position) : :i
ordered: ordinal/Quantitative
How much
position on common scale position on unaligned scale 1o-1 length (lb size) $=-$ tilt, angle $1 / /$ area (2D size) curvature (1) $) ~ \supset$ volume (3D size) lightness black/white color saturation stipple density

Color Vision Process

- rods

■ B / W info in low-light conditions

- not discussed further
- 3 cone types
- sensors: RGB
- 3 opponent color channels

■ one luminance: black/white
■ two "color": red/green, blue/yellow

- color deficiency

■ one hue channel collapsed
■ sex-linked mutation: 8% of men, $.5 \%$ of women

Luminance, Saturation, Hue

■ luminance: how much
■ saturation: how much
■ hue: what

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85]

Ordered: Lum/Sat, Unordered: Hue

■ luminance: how much

- saturation: how much

■ hue: what

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85]

Discriminablity: Categorical Color

■ noncontiguous small regions: 6-12 bins

[Sinha and Meller. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Bioinformatics 2007]

Other Channels

■ size: how much

- small sizes interfere with many other channels

■ tilt/angle: both

monotonic
within quadrant:
how much

between quadrants:
what

between quadrants: diverging

■ shape: what
■ stipple: how much
■ interferes with luminance
■ motion: how much

- grabs attention, difficult to attend to other channels

Color As Three Numbers

Stone
Representing Color As Three Numbers, CG\&A 25(4):78-85

Trichromacy

■ different cone responses area function of wavelength

- for a given spectrum
- multiply by response curve

■ integrate to get response

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85,
www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Metamerism

■ brain sees only cone response
■ different spectra appear the same

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85, www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Metamerism Demo

[www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/ applets/spectrum/metamers_java_browser.html]

Color Matching Experiments

[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85, www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Color Matching Functions

Stiles-Burch, negative lobe

Wavelength (nm)

CIE standard, all positive

Wavelength (nm)
[Stone, Representing Color As Three Numbers, CG\&A 25(4):78-85, www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf]

Color Spaces

- RGB: convenient for machines

■ these three channels not separable
■ CIE XYZ: from color matching functions
■ perceptually based
■ L*a*b*: from XYZ + reference whitepoint

- perceptually linear, safe to interpolate

■ HLS: simple transformation of RGB
■ good: separates out lightness, hue, saturation channels

- bad: lightness not true luminance

■ careful: only pseudo-perceptual!

Lightness vs Luminance

Corners of the RGB color cube

Luminance values

L* values

L from HLS
All the same
[Stone. Color In Information Display. IEEE Visualization 2006 Course Notes. http://www.stonesc.com/Vis06]

Spectral Sensitivity

[Joy of Visual Perception, Peter Kaiser. http://www.yorku.ca/eye/photopik.htm]

