Lecture 3: Data Principles

CPSC 533C, Fall 2011

Tamara Munzner

UBC Computer Science

Mon, 19 September 2011

Papers Covered

Chapter 2: Data Principles

Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG 8(1), January 2002. [graphics.stanford.edu/papers/polaris]

Further Readings

On the theory of scales of measurements. S.S. Stevens. Science 103(2684):677-680, 1946

The Grammar of Graphics. Leland Wilkinson, Springer-Verlag 1999

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, Proc. 1996 IEEE Visual Languages, also Maryland HCIL TR 96-13.

[citeseer.ist.psu.edu/shneiderman96eyes.html]

Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and Torsten Möller, Proc. InfoVis 2004, pp. 151-158.

Using Strahler numbers for real time visual exploration of huge graphs. David Auber. Intl Conf. Computer Vision and Graphics, 2002, p 56-69.

Feature detection in linked derived spaces. Chris Henze. Proc. Visualization (Vis) 1998, p 87-94.

Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.

Dataset Types

Tables

Networks

ATTRIBUTE TUPES categorica (ordered quantitative ordinal sequential diverging

amendment: sequential/diverging crosscuts ordered

continuous (quantitative)

■ 10 inches, 17 inches, 23 inches

continuous (quantitative)10 inches, 17 inches, 23 inches

ordered (ordinal)
small, medium, large
days: Sun, Mon, Tue, ...

continuous (quantitative)10 inches, 17 inches, 23 inches

ordered (ordinal)
small, medium, large
days: Sun, Mon, Tue, ...

categorical (nominal)

apples, oranges, bananas

[graphics.stanford.edu/papers/polaris]

More Attribute Types: Stevens

further subdivision of quantitative

interval: 0 location arbitrary

time: seconds, minutes

ratio: 0 fixed

physical measurements: Kelvin temp

[S.S. Stevens, On the theory of scales of measurements, Science 103(2684):677-680, 1946]

Attribute Semantics

- spatial/nonspatial
- temporal/nontemporal
- independent/dependent
- continuous/discrete
- dimensions/measures
 - dimensions: categorical
 - measures: quantitative
 - databases vocab, used in Polaris

Dataset Semantics

spatial/abstract

- spatial fields if independent spatial attribs
- abstract otherwise: must choose spatial layout

Attributes: Multidimensional Tables

MULTIDIMENSIONAL TABLES s, p ind I I (dep1, dep2) ind: index/independent attrib dep: dependent/value attrib

Attributes: Spatial Fields

SPATIAL FIELDS depedent attab count scala vector tensor 3 dep 1 dep affrib 2 dep attabs

Dataset Semantics

spatial/abstract

- spatial fields if independent spatial attribs
- abstract otherwise: must choose spatial layout
- static/timevarying
 - timevarying if independent temporal dimension
 - tv different than static/dynamic dataset types
 - time series data: simple special case

Other Data Taxonomies

Shneiderman's data+task taxonomy: data

- 1D, 2D, 3D, temporal, nD, trees, networks
- Hanrahan's addition:
 - text and documents

[Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Proc. 1996 IEEE Visual Languages]

Derived Attributes and Spaces

derived attribute: compute from originals

- simple change of type
- complex transformation using global information
- derived spaces
 - dataset with derived attributes
 - may be only derived attribs, or derived+original attribs
 - dataset transformation as abstraction choice

Data Models vs. Conceptual Models

data model: mathematical abstraction

- set with operations
- e.g. integers or floats with *,+
- conceptual model: mental construction
 - includes semantics, support data
 - e.g. navigating through city using landmarks
- conceptual model motivates derived data

[Hanrahan, graphics.stanford.edu/courses/ cs448b-04-winter/lectures/encoding/walk005.html] [Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and Torsten Möller, Proc. InfoVis 2004, pp. 151-158.]

Derived Attributes Example

data model

(floats)

Derived Attributes Example

data model

17, 25, -4, 28.6

(floats)

conceptual model

temperature

Derived Attributes Example

- data model
 - 17, 25, -4, 28.6
 - (floats)
- conceptual model
 - temperature
- depending on task, transform to data type
 - making toast
 - burned vs. not burned (N)
 - classifying showers
 - hot, warm, cold (O)
 - finding anamolies in local weather patterns
 - continuous to 4 sig figures (Q)

Derived Space: Strahler Numbers for Trees

[Using Strahler numbers for real time visual exploration of huge graphs. David Auber. Intl Conf. Computer Vision and Graphics, 2002, p 56-69.]

Derived: Feature Detection in Fluids

[Feature detection in linked derived spaces. Chris Henze. Proc. Vis 1998, p 87-94.] 24/33

Derived: Graph-Theoretic Scagnostics

SPLOM: scatterplot matrix

[Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.]

Scagnostics Measures

 scatterplot measures: monotonic, stringy, skinny, convex, striated, sparse, clumpy, skewed, outlying

[Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.]

Scagnostics Measures

[Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.]

Time

■ 2D+T vs. 3D

- same or different? depends on POV
 - input side vs. output side
- same

input: time as just one kind of abstract input dimension

- different
 - input: semantics (time steps of dynamically changing data)
 - output: visual encoding channel of temporal change very different than spatial position change
- processing might be different
 - e.g. interpolate differently across timesteps than across spatial position

Polaris

- infovis spreadsheet
- table cell
 - not just numbers: graphical elements
 - wide range of retinal variables and marks
- table algebra \Leftrightarrow interactive interface
 - formal language
- influenced by Wilkinson's Grammar of Graphics
 - Grammar of Graphics, Springer-Verlag 1999
- commercialized as Tableau Software

good sandbox for projects!

Polaris: Circles, State/Product:Month

👌 Schema 🛛 🎯 I	mport 🖓 Back	5	> 6	0EM.9	rd																		<	0	Clea	r
CoffeeChain																										
		Pro	ductT	ype	Mont	hs																				
oup in papes by:	State		Coffee											Espresso												
	1	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jan	Jul	Aug	Sep	Oct	Nov	Dec	
	California	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	
Aggregate Data	Colorado	•	•	•	•	•	•	•	•	•	•	•	•			•		•				•				
t in panes by:	Connecticut	٠	٠		٠	•	٠		•	٠		•	٠	٠	•	٠	٠	•				٠	٠	•	٠	
	Florida	•	•	٠	•	٠	•	٠	٠			•	•		•	٠	•	•	•		٠	•		•		
urk:	Illinois	٠	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
ircle 🔻	lowa		•	•	•	•	٠		•	٠	•	•	•	•	•			•	•	•				•		
lor: SUM(Sales)	Louisiana		٠	٠	٠	•	•	•	•	٠	٠			٠		٠	٠	•	•	٠	•	•		٠	٠	
e: SUM(Margin)	Massachusetts	٠	٠	٠	•	•	۲	۲	•	٠	•	•	•	•		•		•	•	•	•	•	•	•	•	
	Missouri	•	•		٠	•	٠	•	•	٠		•	٠	٠	•		•	•	٠	٠	•	٠	٠	•	•	
	Nevada	٠	•	•	٠	•	•		•	٠	•	•	٠	•	•	•	٠	•		٠		•	٠	•	٠	
897.0	New Hampshire	•			٠	•		•	•	٠	•		•			٠		•	•	٠				•		
448.5	New Mexico	•	•	•	٠	•	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	•	٠	
224.25	New York	•	٠	•	•			٠	٠	•	٠	•	•	٠	•	٠	٠	•	٠	٠	•	٠	•	•	•	
0.0	Ohio	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠		٠	٠	•	٠	٠	٠	٠		
1631.0	Oklahoma	٠	٠		٠	•	•	٠	•	٠	•	٠	٠	٠		•	٠	•	٠	•	•	•		٠	•	
	Orczon	٠		•	٠	•	٠	٠	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	
	Texas	•	٠	•	•	٠	•	٠	•	٠	•	•	٠	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•	
	Utah					•																				

Polaris: Gantt Bar, Country/Time

Polaris: Circles, Lat/Long

Polaris: Circles, Profit/State:Months

Fields Create Tables and Graphs

Ordinal fields: interpret field as sequence that partitions table into rows and columns:

• Quarter = (Qtr1),(Qtr2),(Qtr3),(Qtr4) \Leftrightarrow

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

 Quantitative fields: treat field as single element sequence and encode as axes:

Profit = (Profit) \Leftrightarrow

•	•	•	• ••• ••	• •		•	••••	•		•
	-300	-200	-100	0	100	200	300	400	500	600
					Profit	t				

[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]