Lecture 3: Data Principles Information Visualization CPSC 533C, Fall 2011

Tamara Munzner
UBC Computer Science

Mon, 19 September 2011

Papers Covered

Chapter 2: Data Principles
Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG 8(1), January 2002. [graphics.stanford.edu/papers/polaris]

Further Readings

On the theory of scales of measurements. S.S. Stevens. Science 103(2684):677-680, 1946
The Grammar of Graphics. Leland Wilkinson, Springer-Verlag 1999
The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, Proc. 1996 IEEE Visual Languages, also Maryland HCIL TR 96-13. [citeseer.ist.psu.edu/shneiderman96eyes.html]
Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and Torsten Möller, Proc. InfoVis 2004, pp. 151-158.
Using Strahler numbers for real time visual exploration of huge graphs. David Auber. Intl Conf. Computer Vision and Graphics, 2002, p 56-69.
Feature detection in linked derived spaces. Chris Henze. Proc.
Visualization (Vis) 1998, p 87-94.
Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.

Dataset Types

Tables
b)
tables

$$
\begin{aligned}
& \text { cows } \left.\begin{array}{l}
\text { columns = attributes } \\
\text { items } \\
\hline
\end{array} \right\rvert\, \begin{array}{ll}
\text { ate } \\
\end{array}
\end{aligned}
$$

Networks

NETWORKS

node table

link table

Attribute Types
 sequential diverging

- amendment: sequential/diverging crosscuts ordered

Attribute Types

■ continuous (quantitative)

- 10 inches, 17 inches, 23 inches

$$
-\infty-\rho / \int / \int \mid
$$

Attribute Types

－continuous（quantitative）
■ 10 inches， 17 inches， 23 inches

ーーーーノ／／II I
\min
max

■ ordered（ordinal）
■ small，medium，large
－days：Sun，Mon，Tue，．．．

Attribute Types

－continuous（quantitative）
－ 10 inches， 17 inches， 23 inches
ーーールノノ／／I I
$\min \max$

■ ordered（ordinal）
－small，medium，large
■ days：Sun，Mon，Tue，．．．

■ categorical（nominal）
－apples，oranges，bananas

［graphics．stanford．edu／papers／polaris］

More Attribute Types: Stevens

- further subdivision of quantitative

■ interval: 0 location arbitrary
■ time: seconds, minutes
■ ratio: 0 fixed

- physical measurements: Kelvin temp
[S.S. Stevens, On the theory of scales of measurements, Science 103(2684):677-680, 1946]

Attribute Semantics

■ spatial/nonspatial
■ temporal/nontemporal
■ independent/dependent
■ continuous/discrete

- dimensions/measures
- dimensions: categorical

■ measures: quantitative
■ databases vocab, used in Polaris

Dataset Semantics

■ spatial/abstract
■ spatial fields if independent spatial attribs
■ abstract otherwise: must choose spatial layout

Attributes: Multidimensional Tables
mULTIDIMENSIONAL TABLES

ind: index/indpendent attrib
dep: dependent/value attrib

Attributes: Spatial Fields

Dataset Semantics

■ spatial/abstract
■ spatial fields if independent spatial attribs
■ abstract otherwise: must choose spatial layout
■ static/timevarying

- timevarying if independent temporal dimension

■ tv different than static/dynamic dataset types

- time series data: simple special case

Other Data Taxonomies

■ Shneiderman's data+task taxonomy: data
■ 1D, 2D, 3D, temporal, nD, trees, networks
■ Hanrahan's addition:

- text and documents
[Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Proc. 1996 IEEE Visual Languages]

Derived Attributes and Spaces

■ derived attribute: compute from originals

- simple change of type

■ complex transformation using global information
■ derived spaces

- dataset with derived attributes
- may be only derived attribs, or derived+original attribs
- dataset transformation as abstraction choice

Data Models vs. Conceptual Models

■ data model: mathematical abstraction
■ set with operations

- e.g. integers or floats with $*,+$

■ conceptual model: mental construction
■ includes semantics, support data

- e.g. navigating through city using landmarks
- conceptual model motivates derived data
[Hanrahan, graphics.stanford.edu/courses/ cs448b-04-winter/lectures/encoding/walk005.html]
[Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and Torsten Möller, Proc. InfoVis 2004, pp. 151-158.]

Derived Attributes Example

- data model

■ $17,25,-4,28.6$

- (floats)

Derived Attributes Example

- data model
- $17,25,-4,28.6$
- (floats)
- conceptual model
- temperature

Derived Attributes Example

- data model

■ $17,25,-4,28.6$

- (floats)
- conceptual model

■ temperature
■ depending on task, transform to data type
■ making toast

- burned vs. not burned (N)
- classifying showers

■ hot, warm, cold (O)
■ finding anamolies in local weather patterns
■ continuous to 4 sig figures (Q)

Derived Space: Strahler Numbers for Trees

[Using Strahler numbers for real time visual exploration of huge graphs. David Auber. Intl Conf. Computer Vision and Graphics, 2002, p 56-69.]

Derived: Feature Detection in Fluids

[Feature detection in linked derived spaces. Chris Henze. Proc. Vis 1998, p 87-94.]

Derived: Graph-Theoretic Scagnostics

■ SPLOM: scatterplot matrix

[Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.]

Scagnostics Measures

■ scatterplot measures: monotonic, stringy, skinny, convex, striated, sparse, clumpy, skewed, outlying

[Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.]

Scagnostics Measures

[Graph-Theoretic Scagnostics Leland Wilkinson, Anushka Anand, and Robert Grossman. Proc InfoVis 05.]

Time

- $2 \mathrm{D}+\mathrm{T}$ vs. 3 D
- same or different? depends on POV

■ input side vs. output side
■ same
■ input: time as just one kind of abstract input dimension
■ different
■ input: semantics (time steps of dynamically changing data)

- output: visual encoding channel of temporal change very different than spatial position change
■ processing might be different
■ e.g. interpolate differently across timesteps than across spatial position

Polaris

■ infovis spreadsheet

- table cell

■ not just numbers: graphical elements

- wide range of retinal variables and marks

■ table algebra \Leftrightarrow interactive interface

- formal language

■ influenced by Wilkinson's Grammar of Graphics

- Grammar of Graphics, Springer-Verlag 1999

■ commercialized as Tableau Software
■ good sandbox for projects!
[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional
Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1) Jan 2002]

Polaris: Circles, State/Product:Month

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1) Jan 2002]

Polaris: Gantt Bar, Country/Time

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1) Jan 2002]

Polaris: Circles, Lat/Long

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1) Jan 2002]

Polaris: Circles, Profit/State:Months

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1) Jan 2002]

Fields Create Tables and Graphs

■ Ordinal fields: interpret field as sequence that partitions table into rows and columns:

■ Quarter $=($ Qtr1 $),(Q \operatorname{tr} 2),(Q t r 3),(Q \operatorname{tr} 4) \Leftrightarrow$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	9822

- Quantitative fields: treat field as single element sequence and encode as axes:

■ Profit $=($ Profit $) \Leftrightarrow$

[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]

