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Required Readings

Metric-Based Network Exploration and Multiscale Scatterplot.
Yves Chiricota, Fabien Jourdan, Guy Melancon. Proc. InfoVis 04,
pages 135-142. Hierarchical Parallel Coordinates for Exploration of

Large Datasets Ying-Huey Fua, Matthew O. Ward, and Elke A.
Rundensteiner, IEEE Visualization ’99.

Parallel sets: visual analysis of categorical data. Fabien Bendix,
Robert Kosara, and Helwig Hauser. Proc. InfoVis 2005, p 133-140.

2 / 48



Further Reading

Hyperdimensional Data Analysis Using Parallel Coordinates.
Edward J. Wegman. Journal of the American Statistical
Association, Vol. 85, No. 411. (Sep., 1990), pp. 664-675.

Parallel Coordinates: A Tool for Visualizing Multi-Dimensional
Geometry. Alfred Inselberg and Bernard Dimsdale, IEEE
Visualization ’90, 1990.
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Big Picture

covered so far
design levels

problem, abstraction, encoding/interaction, algorithm

methods

taxonomy of visualization design concerns

next stage: use these ideas for analysis and design

analyze previously proposed techniques and systems
design new techniques and systems

me: this lecture as example (and graphs/trees)

you: project proposal, topic presentations
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Analysis Via Levels and Methods

examples in this and graphs/trees lecture

note: only sometimes does this analysis occur in paper
itself!

you need to interpret

(also something to do in your own project!)
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Multiscale Scatterplots

blur shows structure at multiple scales

convolve with Gaussian
slider to control scale parameter interactively

easily selectable regions in quantized image

AppMetric vs Strength Scatterplot
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Figure 3: A 2D scatterplot displaying how the strength and appli-
cation specific metric distribute over the edges of the network in
Figure 2.

as assessed by the example from Williamson and Schneiderman
[24]. We believe that this is partly due to the fact that users are
familiar with the price range in the real estate market and with its
relation to other discrete metrics such as the number of bedrooms.
In other words users are able to predict how the number of bed-
rooms impacts on the price of a house.

However, range sliders may appear as being limitative when
dealing with less intuitive metrics. The study of social networks
or hypermedia structures, for example, often relies on the use of
structural metrics such as the clustering index introduced by Watts
[22, 23], the metric by Kleinberg allowing the identification of au-
thorities and hubs [13], or such as the pagerank index [17]. It is
precisely the correlation between these structural metrics and other
contextual metrics such as the size of documents or publication
date, etc., that is focused on here.

Note that the limitation we stress does not come from the sliders
themselves but rather from the fact that they only enable the se-
lection of rectangular subregions. Brushing the scatterplot using a
rectangular brush, or using a rectangular magnifier glass, bear the
same inconvenient. Moreover, part of the problem resides in the
difficulty to read and interpret the scatterplot.

3 BLURRED SCATTERPLOTS

We have worked at developing a technique allowing an easier and
more flexible selection of points in the scatterplot, by anticipating
on the user’s interpretation of the plot, while synchronizing the in-
teraction on the view of the network itself.

As one can see, the majority of points in the scatterplot of Fig-
ure 3 are located on the left of the diagram and are organized into
what seems to look like one or two bigger subgroups. This unsatis-
factory description of the scatterplot actually points at an important
aspect of metric-based exploration. The user needs to be guided not
only in her/his discovery of the network, but also when reading the
plot in order to accomplish a more accurate and significant selection
of subregions (and/or sub-networks).

We follow the work by Wattenberg and Fisher [21] and claim
that the user interprets the scatterplot through a multiscale percep-
tual scheme. That is, at a higher level the scatterplot is perceived
as forming a few clouds of points. At a finer level of perception, a

cloud may well be seen as being organized into smaller subcompo-
nents of varying shapes and sizes. Wattenberg and Fisher develop
their model by constructing a hierarchy or layers of information re-
flecting the different levels of details of each component of an im-
age. The hierarchy is built from the image by applying a standard
information graphics technique we now describe. The image itself
– think of the scatterplot as being the image – can be considered
as a map f : [0,1]× [0,1] → [0,1]. Convoluting the image with a
Gaussian kernel Gs produces a new image fs = Gs ∗ f , representing
the original image after it has been blurred by a factor s. Figure 4
shows an example of this blurring effect when applied to the scat-
terplot of Figure 3. (The view is zoomed on the subset sitting at the
left and mid-height of the plot.)

Figure 4: Convoluting the image in Figure 3 with a Gaussian filter
produces a blurring effect and helps localize the regions of interest
in the scatterplot.

The blurring effect produces exactly what is anticipated and
wanted. Points forming dense subregions slowly melt into larger
and uniform grey patches which can then be identified by standard
image segmentation techniques. The benefits of these operations
are tremendous. After setting only two parameters, the user can se-
lect a subregion by a simple mouse click, disregarding its complex-
ity or irregular geometry. Incidentally, it might well be the irregu-
larity of a subregion that triggers an interest in it. Again, observe
that the grey patches in Figure 4 could hardly be selected using a
rectangular device3.

3Note that it would be more accurate to say that the selection of an irreg-
ular region is hard to achieve using any device having a regular geometrical
shape (be it rectangular – as with the sliders, or round – a brush, etc.).

137

[Figs 3,4,5. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Problem and Abstraction Levels

(problem characterization: generic network exploration)

minimal problem context; paper is technique-driven not
problem-driven

task abstraction: selection and filtering at different scales

within scatterplots
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Abstraction Level: Data

original data: relational network
links between Java classes

derived attributes: 2 structural metrics for network
edge strength: cluster cohesiveness
sw engr: logical dependencies between classes

edges below color-coded by metric

thus: table of numbers

[Fig 2. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Encoding/Interaction Level

basic solution:
visual encoding technique: scatterplots

mark: points. channels: horiz and vert position

interaction technique: range sliders to filter max/min
limitations

interesting areas might not be easy to select as
rectangular regions, esp for complex derived attributes

AppMetric vs Strength Scatterplot
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[Fig 3. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Multiscale Scatterplot Selection Technique

new encoding: derived space created from original
scatterplot image

greyscale patches forming complex shapes
enclosure of darker patches within lighter patches

new interaction:
simple: sliders for filter size s and number of levels k
complex: single click to select all items >= k

[Fig 4. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Multiscale Scatterplot Selection Technique

algorithm level: creating derived space
greyscale intensity is combination of

blurred proximity relationships from original scatterplot
image: convolve with Gaussian filter
point density in original scatterplot image

quantize image into k levels

[Fig 3. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Method: Linked Views

second linked view: 3D node-link network
patch selection in blurred scatterplot view shows
corresponding components in network view
selection in one view filters what is shown in the other

[Fig 6. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Results: IMDB

original data: IMDB graph

metrics: network centrality, node degree

3 hubs selected in network view

[Fig 7. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Results: IMDB 2

single click in blurred scatterplot view selects entire clique

[Fig 8. Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and

Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.]
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Critique

strengths

successful construction and use of derived space
appropriate validation

qualitative discussion of result images to show new
technique capabilities

synergy between encoding and interaction choices

weaknesses

somewhat tricky to follow thread of argument since
intro/framing focuses on network exploration, but
fundamental technique contribution more about
scatterplot encoding/interaction
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Hierarchical Parallel Coordinates

technique-driven paper

(no problem characterization)

scale up parallel coordinates to large datasets

limitation: overplotting/occlusion

[Figs 1,2. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for
Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]
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Parallel Coordinates: Basics

scatterplot limitation: vis enc with orthogonal axes

only 2 attribs with spatial position channel in plane

instead, line up axes in parallel to show many attribs with
position channel

item shown with line with k segments (not as point)
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Par Coord Tasks: Showing Correllation

pos corr: straight lines; neg corr: all cross at single point

[Hyperdimensional Data Analysis Using Parallel Coordinates. Edward J. Wegman.
Journal of the American Statistical Association, 85(411), Sep 1990, p 664-675.]
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Par Coord Tasks: Showing Correllation

strong neg corr between two final axis pairs

[Fig 1. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing

Large Multivariate Data Sets. IEEE Visualization 99.]

visible patterns only between neighboring axis pairs
how to pick axis order?

usual solution: reorderable axes, interactive exploration
same weakness as many other techniques
downside: human-powered search

not directly addressed in HPC paper either
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Hier Par Coords: Abstraction

data abstraction

original data: table of numbers
derived data:

hierarchical clustering of items in table
cluster stats: # points, mean, min, max, size, depth
cluster density: points/size
cluster proximity: linear ordering from tree traversal

task abstraction

finding correlations
finding trends, outliers at multiple scales
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HPC: Encoding Derived Data

vis enc: variable-width opacity bands

show whole cluster, not just single item
min/max: spatial position
cluster density: transparency at mean point

interpolate transparency between these

[Fig 3. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing
Large Multivariate Data Sets. IEEE Visualization 99.]
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HPC: Interacting With Derived Data

interactively change level of detail to navigate cluster hier

[Fig 4. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing
Large Multivariate Data Sets. IEEE Visualization 99.]

23 / 48



HPC: Encoding Derived Data

vis enc: color based on cluster proximity derived attrib

resolves ambiguity from crossings, clarifies structure

[Fig 6. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing
Large Multivariate Data Sets. IEEE Visualization 99.]
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HPC: Magnification Interaction

dimensional zooming: use all available space

method: linked view to show true extent

[Fig 8. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing

Large Multivariate Data Sets. IEEE Visualization 99.]
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Critique

par coords
strengths

can be useful additional view
(rare to use completely standalone)
now popular, many follow-on technique refinements

weaknesses

major learning curve, difficult for novices

hier par coords
strengths

success with major scalability improvement
again, careful construction and use of derived space
again, appropriate validation (result image discussion)

weaknesses

interface complexity (structure-based brushing)
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Parallel Sets

technique-driven (problem char not main concern)

data abstraction
table with categorical (not quant) attributes

discrete
small number of distinct values
ordering between attribs not given

cross-tabulation (multi-way frequency/contingency
table)

task abstraction

identify hotspots and major trends
find relationships between dimensions and correlations
between categories
not outlier detection
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Visual Encoding

like par coords but with boxes scaled by frequency values

color coded by values for current active dimension

[Fig 4. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]
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Visual Encoding

boxes can expand to show histograms

[Fig 7. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]
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Interaction: Reordering

[Fig 5. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]

31 / 48



Interaction: Aggregation

[Fig 5. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]
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Interaction: Filtering

[Fig 5. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]
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Interaction: Highlighting

[Fig 5. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]
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Results: Case Study

corr between family type, city sizes, income, detergent?

[Fig 5. Bendix, Kosara, Hauser. Parallel sets: visual analysis of categorical data. Proc.
InfoVis 2005, p 133-140.]
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Critique

strengths

handles categorical, frequencies

weaknesses/limits

designed for few not many distinct values
designed for few not many attributes
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Synthesis

emphasis on derived spaces

multiscale scatterplot, hier par coord

extending scope of data handled

hier par coord: handle more data
parallel sets: handle different data

all three designed to show all attribs

in contrast to dimensionality reduction
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Projects

programming

problem-driven (design studies)
technique-driven (new technique idea)
implementation (of previously proposed technique)

analysis

survey

team of two people requires scope*2

new this year: submit source code along with final report

pre-proposal meetings: deadline in two days

many already done (I signed off)
still a few to do (deadline in two days)
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Project Proposals I

http://www.cs.ubc.ca/ tmm/courses/533-11/projectdesc.html

title (mandatory)
names/email for people on team
description of problem you’re targeting

prob-driv: domain, task, dataset
tech-driv: explain in terms of method taxonomy

personal experience with this problem
description of proposed solution

prob-driv:
data and task abstraction
encoding and interaction techniques
if refining/improving previous solution, also analyze that
in same terms

tech-driv:
encoding and/or interaction techniques, in detail
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Project Proposals II

scenario of use
what user will do/see step by step in performing a task
while using system
must include illustrations

proposed implementation approach
high-level: platforms/language, toolkits if any
big picture of what you code vs what toolkit supports
ok to have set of alternatives if not narrowed down yet

schedule: milestones with target dates
be specific not just generic (plan/code/writeup)
think agile: get basics working early, then augment

previous work
not as complete as final, but you should have a start

one per project due Oct 28 5pm as PDF by email
subject header: 533 submit proposal
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Topic Presentations: Signing Up

topic list

www.cs.ubc.ca/ tmm/courses/533-11/presentations.html

choice can indeed be motivated by your project topic

sign up by email by Fri 10/21 5pm

required: three topic choices
optional: one veto day that you do not want

Wed 11/9, Wed 11/23, Mon 11/28, Wed 11/30

I will post final topic/date assignments by Mon 10/31

might have two people split one topic if it’s popular

I will post list of papers on topic 10 days in advance

you pick 3 papers total, at least 1 must be from my list
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Presentations

you present 3 papers in 25 minutes
aim for 20 minutes presentation, 5 minutes questions

grading criteria
content summary: 50%

you explain papers to people who have not read them
you analyze the work w.r.t design levels and
methods

synthesis/critique: 20%
for both individual papers, and across all three

presentation style: 15%
materials preparation: 15%

slides required

logistics
you may use my laptop or yours
if my laptop slides due 11am (PDF or PPT)
if my laptop, check in advance for videos/demos
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Presentations: Process Advice

bad idea: make slides; give talk in class

good idea: start early and refine iteratively

make slides
practice talk out loud with timer

realize it’s too long
realize it’s too short
realize what you forgot to put on slide
realize why order of explanation is backwards
realize where you need more pictures/diagrams
realize where you haven’t figured out what to say

refine slides
loop back up to practice; repeat until great!
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Presentations: Process Advice 2

tips on practicing
always time it (whole thing; ideal slide by slide)
best: give talk to somebody and get feedback
at least once practice standing like giving real talk

tips on slides
ensure smallest text readable from back of room
use color correctly (sufficient luminance contrast)
early drafts often text-oriented; add pictures as refine

tips on speaking
talk loud enough that we can hear
vary your tone of voice
it gets better; practice makes it less scary

lots more useful tips
www.cs.ubc.ca/∼tmm/courses/533-11/
presentations.html#preparation

46 / 48



Reading For Next Time: NOTE CHANGE

Prefuse: A Toolkit for Interactive Information Visualization. Jeffrey
Heer, Stuart K. Card, James Landay. Proc ACM CHI, 421-430,
2005.

Protovis: A Graphical Toolkit for Visualization. Michael Bostock
and Jeffrey Heer. IEEE Trans. Visualization & Computer Graphics
(Proc. InfoVis), 2009.

D3: Data-Driven Documents. Michael Bostock, Vadim Ogievetsky,

Jeffrey Heer. IEEE Trans. Visualization & Computer Graphics

(Proc. InfoVis), 2011.
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Reminders

Project meetings due 10/19

this Wednesday

No class next week (Oct 24/26)
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