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Readings Covered

Graph Visualisation in Information Visualisation: a Survey. Ivan
Herman, Guy Melancon, M. Scott Marshall. IEEE Transactions on
Visualization and Computer Graphics, 6(1):24-44, 2000.

Online Dynamic Graph Drawing. Yaniv Frishman and Ayellet Tal.
Proc EuroVis 2007, p 75-82.

Topological Fisheye Views for Visualizing Large Graphs. Emden

Gansner, Yehuda Koren and Stephen North, IEEE TVCG 11(4), p

457-468, 2005.
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Further Readings

Animated Exploration of Graphs with Radial Layout. Ka-Ping Yee, Danyel
Fisher, Rachna Dhamija, and Marti Hearst, Proc InfoVis 2001, p 43-50.

Cushion Treemaps. Jarke J. van Wijk and Huub van de Wetering, Proc
InfoVis 1999, pp 73-78.

Interactive Information Visualization of a Million Items. Jean-Daniel
Fekete and Catherine Plaisant, Proc InfoVis 2002, p 117-124.

GrouseFlocks: Steerable Exploration of Graph Hierarchy Space. Daniel
Archambault, Tamara Munzner, and David Auber. IEEE Trans.
Visualization and Computer Graphics 14(4):900-913 2008.

Multiscale Visualization of Small World Networks. David Auber, Yves
Chiricota, Fabien Jourdan, Guy Melancon, Proc. InfoVis 2003, p 75-81.

Visual Exploration of Multivariate Graphs. Martin Wattenberg, Proc.
CHI 2006, p 811-819.
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Hermann Survey

true survey, won’t try to summarize here!

nice abstraction work by authors themselves

derived data: skeletonization via Strahler numbers
encoding techniques:

ghosting = layering
hiding = elision
grouping = aggregation

[Fig 22. Herman, Melancon, and Marshall. Graph Visualisation in Information
Visualisation: a Survey. IEEE Transactions on Visualization and Computer Graphics,
6(1), pp. 24-44, 2000]
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Trees: Basic Node-Link Drawings

task/data abstraction

understanding detailed topological structure of tree

visual encoding: layered node-link view

vertical position: distance from root node in hops
horizontal position: (as much symmetry as possible)

[http://gravite.labri.fr/?Want to work with us ?:Hiring puzzles:Tidy Tree Layouts]
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Trees: Basic Node-Link Drawings

algorithm level:

Wetherell and Shannon 1978, Tidy Drawings of Trees
Reingold and Tilford 1981, Tidier Drawing of Trees
Walker 1990, A Node-positioning Algorithm for General
Trees
Buchheim et al 2002, Improving Walker’s Algorithm to
Run in Linear Time

[http://gravite.labri.fr/?Want to work with us
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Trees: Radial Node-Link Drawings

data abstraction: data stream, not static file

encoding technique: radial not rectilinear layout

interaction technique: animated transitions from old to
new layout

[Figs 3, 5. Yee et al. Animated Exploration of Graphs with Radial
Layout. Proc InfoVis 2001.]
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Trees: Radial Node-Link Drawings

animation requirements identified:
avoid center collapse/clutter by interpolate polar not
rectilinear

maintain neighbor order to stabilize (note prefuse bug!)

[Fig 2. Yee et al. Animated Exploration of Graphs with Radial Layout. Proc InfoVis
2001.] 8 / 41

Trees: Treemaps

data abstraction: tree nodes have attributes

task abstraction: emphasize node attribs, not topological
structure

visual encoding: use containment not connection

[Fig 1. van Wijk and van de Wetering. Cushion Treemaps. Proc InfoVis
1999, pp 73-78.]
[http://www.cs.umd.edu/hcil/treemap-history/treeviz colorful scaled.gif]
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Cushion Treemaps

visual encoding: also show nesting/topo structure more
clearly with shading cues

interaction: scale parameter controls global vs. local

[Figs 4, 5, 6. van Wijk and van de Wetering. Cushion Treemaps. Proc
InfoVis 1999, pp 73-78.]
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Scaling Up Treemaps: MillionVis

visual encoding: treemaps, scatterplots
darkness shows nesting level

algorithm: many GPU tricks for speed
dynamic queries through Z buffering

[Fig 1. Fekete and Plaisant. Interactive Information Visualization of a Million Items.
Proc InfoVis 2002, p 117-124.]
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Scaling Up Treemaps: MillionVis

interaction: animated transitions
visenc requirement: stable layout

[Fig 4a. Fekete and Plaisant. Interactive Information Visualization of a Million Items.
Proc InfoVis 2002, p 117-124.]

12 / 41

Scaling Up Treemaps: MillionVis

scalability requires care at visual encoding level

not just algorithm level!
to visually distinguish with fewer pixels, use shading not
outline

[Fig 2. Fekete and Plaisant. Interactive Information Visualization of a Million Items.
Proc InfoVis 2002, p 117-124.]
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Graphs: Hierarchical Layout

visual encoding
vertical position: distance from root
does not mean using containment

algorithms
Sugiyama et al 1983, Methods for Visual Understanding
of Hierarchical System Structures
Gansner et al 1993, A Technique For Drawing Directed
Graphs
Eiglsperger et al 2005, An efficient implementation of
Sugiyama’s algorithm for layered graph drawing
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Graphs: Circular Layout

visual encoding

nodes on circle
edge crossings minimized

algorithms

Six and Tollis 1999, A Framework for Circular Drawings
of Networks
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Graphs: Force-Directed Placement

visual encoding
nondeterministic placement

algorithm
spring forces pull together edges, repulsive forces pull
apart nodes
optimization framework easy to extend, but tends to be
brittle

algorithms
Fruchterman and Reingold, 1991, Graph Drawing By
Force-Directed Placement
Kamada and Kawai, 1989, An Algorithm For Drawing
General Undirected Graphs
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Online Dynamic Graph Drawing

data abstraction: streaming data not static file

task abstraction: dynamic stability (tradeoff)

minimize visual changes
stay true to current dataset structure

[Fig 1. Frishman and Tal. Online Dynamic Graph Drawing. Proc EuroVis 2007, p
75-82.]
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Online Dynamic GD: Algorithm

static graph layout algs unstable

small changes in input can have large changes in output
randomness, no constraints on maintaining geometric
proximity

dynamic online algorithm

first step: initialize, layout
later steps: merge, pin, layout, animate
acceleration: partition before GPU force-directed layout
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Online Dynamic GD: Validation

algorithm level

complexity analysis
benchmarks: running time for CPU and GPU versions

visual encoding level

qualitative discussion of result images/video
quantitative metrics:

pairwise avg node displacement for stability
potential energy for quality
compare static, full dynamic, dynamic without pinning
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Critique

strengths
strong algorithmic contribution

previous work not scalable

very good validation, matches technique contribution
best paper award, EuroVis 2007

weaknesses
using mesh datasets to test graph drawing claims

different topological characteristics than typical infovis
case

[Fig 3a. Frishman and Tal. Online Dynamic Graph Drawing. Proc EuroVis 2007, p
75-82.]
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Multi-level Graphs

data abstraction: create cluster hierarchy on top of
original graph (coarsening)

Graph Hier 1 Graph Hier 2 Graph Hier 3

[Fig 3. Archambault et al. GrouseFlocks: Steerable Exploration of Graph Hierarchy
Space. IEEE Trans. Visualization and Computer Graphics 14(4):900-913 2008.]
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Multi-level Graphs: GrouseFlocks

visual encoding: containment

interaction: expand/contract metanodes to change graph
cut

[Fig 2. Archambault et al. GrouseFlocks: Steerable Exploration of Graph Hierarchy
Space. IEEE Trans. Visualization and Computer Graphics 14(4):900-913 2008.]
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Small-World Networks

high clustering, small path length

vs. random uniform distribution

examples

social networks, movie actors, Web, ...

multiscale small-world networks

exploit these properties for better layout
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Small World Coarsening

remove low-strength edges

maximal disconnected subgraphs

quotient graph: subgraph = higher-level node

[Fig 2. Auber et al. Multiscale Visualization of Small World Networks. Proc. InfoVis
2003, p 75-81.]
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Small World: Nested Quotient Graphs

visual encoding
containment: subgraph laid out within metanode

[Fig 3. Auber et al. Multiscale Visualization of Small World Networks. Proc. InfoVis
2003, p 75-81.]
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Small World: Nested Quotient Graphs

pro: very evocative of structure

con: does not scale past 2-3 levels of depth

[Fig 5. Auber et al. Multiscale Visualization of Small World Networks. Proc. InfoVis
2003, p 75-81.]
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Topological Fisheye Views

data abstraction
input is laid-out graph
construct multilevel hierarchy by coarsening graphs

interaction: user controls focus point

visual encoding: show hybrid view made from cut through
several levels

[Fig 2. Gansner, Koren, and North, Topological Fisheye Views for Visualizing Large
Graphs. IEEE TVCG 11(4), p 457-468, 2005.]
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Topological Fisheye Views

[Fig 4,7. Gansner, Koren, and North, Topological Fisheye Views for Visualizing Large
Graphs. IEEE TVCG 11(4), p 457-468, 2005.]
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Topo Fisheye: Coarsening Strategy

must preserve graph-theoretic properties

topological distance (hops away), cycles
cannot just use geometric proximity alone
cannot just contract nodes/edges
exploit geometric information with proximity graph

[Fig 2. Gansner, Koren, and North, Topological Fisheye Views for Visualizing Large
Graphs. IEEE TVCG 11(4), p 457-468, 2005.]
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Topo Fisheye: Coarsening Requirements

uniform cluster/metanode size

match coarse and fine layout geometries

scalable

[Fig 10. Gansner, Koren, and North, Topological Fisheye Views for Visualizing Large
Graphs. IEEE TVCG 11(4), p 457-468, 2005.]
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Topo Fisheye: Hybrid Graph

find active nodes

[Fig 14. Gansner, Koren, and North, Topological Fisheye Views for Visualizing Large
Graphs. IEEE TVCG 11(4), p 457-468, 2005.]
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Topo Fisheye: Distort For Uniform Density

visual encoding

geometric distortion for uniform density
(colorcoded by depth in hierarchy to illustrate algorithm)

[Fig 15. Gansner, Koren, and North, Topological Fisheye Views for Visualizing Large
Graphs. IEEE TVCG 11(4), p 457-468, 2005.]
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Critique

strengths

topologically sophisticated, not just geometric distortion
rigorous approach

weaknesses (shared by many approaches)

what if mental model does not match coarsening
strategy?
again, meshes for evaluating infovis claims
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PivotGraph

task abstraction: show relationship between node
attributes and connections in multiattribute graph

data abstraction: rollup and selection transformations

[Fig 1. Wattenberg. Visual Exploration of Multivariate Graphs. Proc. CHI 2006, p
811-819.]
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PivotGraph

visual encoding: line (1D) or grid (2D), area proportional
to attribute

grid nodes based on attribute count, not original graph
node count!
scalability through abstraction, not layout algorithms

[Fig 4. Wattenberg. Visual Exploration of Multivariate Graphs. Proc. CHI 2006, p
811-819.]
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PivotGraph

visual encoding: line for 1D rollup, or grid for 2D case

[Fig 6. Wattenberg. Visual Exploration of Multivariate Graphs. Proc. CHI 2006, p
811-819.]
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PivotGraph

interaction: changing rollup/selection choices, animated
transitions between states

[Fig 2,3. Wattenberg. Visual Exploration of Multivariate Graphs. Proc. CHI 2006, p
811-819.] 40 / 41

PivotGraph

in general, more compact than matrix view

[Fig 7,8. Wattenberg. Visual Exploration of Multivariate Graphs. Proc. CHI 2006, p
811-819.]
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Presentation Topics

see course page for your day/topic

seed papers coming soon for Wed Nov 9 folks
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