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Required Readings

Chapter 8 Astrbute Reduction Methads

Glimmer: Multievel MDS on the GPUL. Stephen Ingrarm, Tam:
Minares and e Olr. IEEE TVCG,15(2) 245 et M/ or
005.

Further Reading

Hypesl: Vet of s s oy wlen
Jarke J. van Wik and Robert van Lire. Proc. IEEE Visualization
1063 p 119125

Interactive Hierarchical Dimension Ordering, Spacing and Filtering
for Exploration Of High Dimensional Datasets. Jing Yang, Wei
Peng, Matthew O. Ward and Elke A. Rundensteine. Proc. InfoVis
2003

A Data-Driven Reflectance Model. Wojciech Matusik, Hanspeter
Pfister, Matt Brand and Leanard McMilln. Proc. SIGGRAPH
2003

Data Reduction

' how to reduce amount of stuff to draw?
= crosscuts iew composition considerations
a item reduction
u tast time.
u raws o table

= attribute reduction

= methods for both
= fiering, ageregation, orderng.

Attribute Reduction Methods

& camera metaphors
= slcing, cutting, projection
' filering, ordering, aggregation
' for attibutes 25 opposed to items
& dimensionaliy reduction
uncovering hidden structure
ue dimensionality
= generating synthetic dimensions
= near mapoin
= nonlnesr mappngs
= displaying lov-dimensional spaces
u scattaplots, SPLOMS, landscapes

Slicing/Cutting: Spatial Data

' easy to understand: spatial data, 3D to 2D, axis aligned

7, st e Valton M Ve o
e T T o s P (P B 2308
o

Slicing: High-Dimensional Functions

& HyperSiice: matrx of orthogonal 2D slices
= each panel is display and control: drag to change slce
= simple 3D example
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Slicing: HyperSlice

4D function Y°2 w/(1+ x — pi?)
= diagonal = standard graph
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Slicing: HyperSlice

= satellite orbit eccentricity: x pos. y pos, x vel, grav const

Projections

= orthographic: remove allinformation about filtered dims
= hypercube: 3D 10 20, 4D t0 30 (video
= perspective: some info about filtered dims remains.
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Attribute Filtering

= filering, but for attributes rather than items.
= unfitered vs fitered SPLOM

Attribute Ordering

= ordering, but for attributes rather than items
= Hierarchical Clstering Explorer

& vocab use in field not consistent
 dimension;attrbute
= attribute reduction: reduce set with fitering
= includes orthographic projection
 dimensionality reduction: create smalle set of new dims
st sze s smaller than orginal, new dims compleely
s
clrifction: s dmersione region
H mdud:s some projections (but not all)
vocab: prjection/mapping

& measurements indirect not direct
= reshworld sensor imitations

& measurements made in sprawling space
u documents, imsges

= DR only suitable if (almost) all information could be

conveyed with fewer dimensions
= how do you know? need to estimate true dimensionality
to check i diferent than orginll

' error for low-dim projection vs high-dim original
= o sl s ooty e proposed
= cumulative variance that s not sccounted for
= S, match varaions in ditance (v actus ditance
valuss)
u stress: diffrence betwen interpoint distances n high
and low dimensions

stress(0,8)

= D: i of lowD distances
= & matrix of D distances 5
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Dimensi vs Attribute L ing Hidden Struct Estimating True Dimensionality Showing Dimensionality Estimates

1 scree plots as simple way: error against # dims
= orgina dataset: 204 dims
= estimate: almost al variance preserved with < 20 dims.
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Linear Dimensionality Reduction: PCA

= principal components analysis
ribe location of each point as linear combination of

weights for each axis
= finding axes: first with most variance, second with next

Nonlinear Dimensionality Reduction

' many techniques proposed

# M, laring, o, LLE, TSHE,

= optimization prob
a pro: can handle e athe tha e sructne
1 con: lose al ties to original dimensions.

= new dimensions cannot be easiy related to originals

DR in Visualization: Tasks

' find)verify new synthetic dimensions
= 3t the new dimensions belevable?
= ex: data-driven reflectance model
' find)verfy clusters
s thee clearclster structure in the new low-dim space?
= does it match a conjectured clusterng (color-coded)
= ex: glmmer

Example: DR for CG Reflectance Model

= goal: simulate how light bounces off materals to make
realisic pictures
= computer graphics: BROF (refectance)

= idea: measure what light does with real materials
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Capturing Material Reflectance

= measurement: interaction of light with real materials
(spheres)
= resut: 104 igh-res images of material
= each image 4M pixls
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Goal: Image Synthesis

1 step 1 create new renderings vith CG objects that look
fike captured materials
G teapot looks just lk real hematite

1 step 2: simulate completely new materials
= rusty, greasy.

{Fi 6.1, Mo 2. Dt Drvn Refecancs Mol SICCRAPH 2403

Need For Low-Dimensional Model

' how o do step 2 simulation of new materials?
104 materias # 4M pixels = 400 million dimensions
= model much too hi-dim to be useful

uch more concise model that humans can
rmond o v g compet rghes maees
= allow users to tweak meaningful knobs: how shiny, how
greasy, how metallic what color.

= dimensionality reduction to the rescue

Dimensionality Reduction: Linear

= first try: PCA, linear DR technique
= result: error fals offsharply
= good resuts for step 1 around 45 dims
= step 2 problem: physically impossble intermediate
points when simulating new materials
= specular highights cannot have holes!
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Dimensionality Reduction: Nonlinear

= second try: charting, nonlinear DR
better i data embedding is curved not flat

Dimensionality Reduction: Nonlinear

= second try: charting, nonlinear DR
a scree plot suggests 10-15 dims
= note that dim estimate depends on techniaue used!
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= look for meaning in scatterplots
a each synthetic dimension named by peopl, not by
algorithm
= points represent reak-world images (spheres)
= people inspect images conespondin to points o decide
if 3xis could have 3 meaningful name
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= crosscheck meaning
rrows show simulated images (teapots) made from

model
= check if those match dimension semanics
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& Diffuseness-Glossiness
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Nonlinear Dimensionality Reduction

& MDS: multidimensionsl scaling.
= confusingly. large family of things al called MDS
a some linea, some nonlinear!

& classical: minimize strain

aly formulation equivalent to PCA (linear)
= spectral methods: approximate eigenvectors
& distance scaling: minimize stress

= nonlinear optimization

= force simlation (mass sring)

Spring-Based MDS: Naive

= pest ol o
compute spring force to all ather points
. d\"erente Eetwcen igh i, low dim distance
o better location using computed forces
u compute wancs bt s pos

' O(r?) teration, O() lgorithm




Faster Spring Model: Stochastic

' compare distances only with a few points
= maintain smalllocal neighberhood set

Faster Spring Model: Stochastic

' compare distances only with a few points
= maintain smallloca neighborhood set
' each time pick some randoms, swap in if closer

Faster Spring Model: Stochastic

= compare distances only with a few points
= maintain smallloca neighborhood set
' each time pick some randoms, swap in if closer

Faster Spring Model: Stochastic

' compare distances only with a few points

' small constant: 6 locals, 3 randoms typical
= O(n) iteration, O(s?) algorithm

Glimmer Algorithm

' multlevel to avoid local minima, designed to exploit GPU
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& restrction to decimate
 relaxation as core computation
= relaxation to interpolate up to next level
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Glimmer vs Stochastic Alone

' GPU version of stochastic as relaxation subsystem
wergence propertes if un alone
' only abvious when scalablity allows thorough testing
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Stochastic Termination

' how do you know when it's done?
= no sbsolute threshold, depends on dataset
= interactiv clck to stop does not werk for subsystem

' sparse normalized stress approximation
= minimal overhead to compute (vs. full stress)
pass fiter
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GPUs

& characteristics
 small st of localized texture
= output at predetermined locations
& no variable length looping
' 3void conditionals: 3l floaing point units execute same

instrat same time

= mapping problems to GPU
s bcoms ttues

inner loops become fragment shader code.
¥ o st seames ey

Finding/Verifying Clusters

= sparse document dataset: 28K dims, 28K points
= Glimmer (distance) vs PivotMDS (classical)
= speed improvement 5o distance as fast as classical
= major qualiy difference for sparse datases
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Showing DR Data

= scatterplot showing points
only works if true dimensionality is 2 (.. or 3)
= need to il down to see what points reresent
= SPLOM
= safe choice
= landscapes
= avoid! studies show worse than just using paints

Reading For Next Time

Hierarchical Paalll Coordinates for Exploration of Large Datasets
Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner,
EEE Visuslization ‘99

Parallel ses: visual analyss o categorical data. Fabien Bendix
Rabert Kosara, and Helwig Hauser. Proc. InfoVis 2005, p 133-140.

Metric Based Network Exploration and Multiscale Scatterplot
Yues Chircota, Fabien Jourdan, Guy Melancon. Proc. InfoVis 04,
pages 135142,

Reminders

= Project mestings due 10/19
week from today
= Office hours today after class (5-6)
= or schedule specific meeting time by email
= No class Oct 24/26




