Lecture 7: Single View Methods

Information Visualization CPSC 533C, Fall 2011

Tamara Munzner

UBC Computer Science

Wed, 28 September 2011

Required Readings

Chapter 5: Single View Methods

Trellis paper moved to Multiple Views on Monday

Further Reading

Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization. Friendly and Denis. http://www.math.yorku.ca/SCS/Gallery/milestone/

Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27(6):1073-1079, 1999.

Multi-Scale Banking to 45 Degrees. Heer and Agrawala. IEEE TVCG 12(5) (Proc. InfoVis 2006), Sep/Oct 2006, pages 701-708.

Overview Use in Multiple Visual Information Resolution Interfaces. Lam, Munzner, and Kincaid. Proc. InfoVis 2007.

VisDB: Database Exploration using Multidimensional Visualization. Keim and Kriegel. IEEE CG&A, 1994

Principles, Methods, and Techniques...

- part 1: principles (3 chapters)
 - why underlying many design decisions
 - data, visual encoding, interaction
- part 2: methods (4 chapters)
 - what are the axes of the (current) design space
 - taxonomy of design considerations
 - how many views? single, multiple
 - how to reduce what's shown? data, dimensions
- part 3: techniques (3 lectures [~4 chapters...])
 - analyze techniques by which methods/principles used
 - tables, graphs, (text/logs), spatial
 - grouped by data type to follow nested model
 - technique level design happens after data type chosen at abstraction level

... and Practice

- part 4: practice (2 lectures)
 - problem identification and task abstraction
 - validation at problem, abstraction, technique levels
 - research process/papers

Experiment

- which lecture style works best?
- summarize chapters thoroughly
 - last several lectures
 - if book doing its job, maybe other choices viable!
- summarize lightly
 - also bring up other ideas/approaches
 - more time for discussion
 - trying this today
- end of class: get feedback from you

Single View Methods

- all information integrated in one view
- basic visual encodings
 - spatial position
 - color
 - other channels
 - pixel-oriented techniques
- visual layering
 - global compositing
 - item-level stacking
- glyphs

Spatial Position

- most statistical graphics
 - bar chart, histogram

Spatial Position

- most statistical graphics
 - bar chart, histogram, dot plot, line chart

Statistical Graphics

- heavy focus on spatial position for visual encoding
- long history for paper-based views of data
 - springboard for infovis http://www.datavis.ca/milestones/
- many ways to make interactive (more later)
- many ways to refine/improve/combine

Line Charts

- invented by William Playfair (1759-1823)
 - also bar charts, pie charts, ...

Banking to 45 Degrees

- previous work by Cleveland
- perceptual principle: most accurate angle judgement at 45 degrees
- pick line graph aspect ratio (height/width) accordingly

[www.research.att.com/~rab/trellis/sunspot.html]

Multiscale Banking to 45

- frequency domain analysis
- find interesting regions at multiple scales

Figure 5. Sunspot observations, 1700-1987. The first plot shows lowfrequency oscillations in the maximum values of sunspot cycles. The second plot brings the individual cycles into greater relief.

[Multi-Scale Banking to 45 Degrees. Heer and Agrawala, Proc InfoVis 2006 vis.berkeley.edu/papers/banking]

Choosing Aspect Ratios

- FFT the data, smooth by convolve with Gaussian
- find interesting spikes/ranges in power spectrum
- cull nearby regions if too similar, ensure overview shown
- create trend curves for each aspect ratio

Multiscale Banking to 45

[Multi-Scale Banking to 45 Degrees. Heer and Agrawala, Proc InfoVis 2006 vis.berkeley.edu/papers/banking]

Bar vs Line Charts

■ line implies trend, do not use for categorical data

[Fig 2. Zacks and Tversky. Bars and Lines: A Study of Graphic Communication. Memory and Cognition 27(6):1073-1079, 1999.]

Scatterplots

- encode two input variables with spatial position
 - show positive/negative/no correllation between variables
 - show clusters: clumpiness/density, shape, overlap

Old Faithful Eruptions

[http://upload.wikimedia.org/wikipedia/commons/0/0f/Oldfaithful3.png]

Scatterplots

 or compare correlation/clusters for two position attributes against more attributes encoded with color/shape

[Fig 1c. Robertson et al. Effectiveness of Animation in Trend Visualization. IEEE Trans. on Visualization and Computer Graphics 14(6):1324-1332 (Proc. InfoVis08), 2008.]

Colormap Taxonomy

http://www.colorbrewer.org

[Brewer, www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Rainbows: The Good, The Bad, The Ugly

[Fig 1. Rogowitz and Treinish. Data visualization: the end of the rainbow. IEEE Spectrum 35(12):52-59 1998.] [Fig 2,1. Bergman and Rogowitz and Treinish. A Rule-based Tool for Assisting Colormap Selection. Proc. IEEE Vis 1995, p 118-125.] [Kindlmann. http://www.cs.utah.edu/gk/lumFace]

Accuracy/InfoDensity Tradeoff: Position/Color

[Fig 4b,4a. Meyer et al. Pathline: A Tool for Comparative Functional Genomics. Proc. EuroVis 10, p 1043-1052.]

Tradeoff: Empirical Study

[Fig 1. Lam, Munzner, and Kincaid. Overview Use in Multiple Visual Information Resolution Interfaces. Proc. InfoVis 2007]

Study: Control Room Scenario

Which location has the highest power surge for the given time period? (find extreme value, y-dimension)

A fault occurred at the beginning of this recording, and resulted in a temporary power surge. Which location is affected the earliest? (find extreme value, x-dimension)

[Lam, Munzner, and Kincaid. Overview Use in Multiple Visual Information Resolution Interfaces. Proc. InfoVis 2007]

Study: Findings

- tasks
 - Max: simple, local, no comparison
 - Most: complex, dispersed, no comparison
 - Shape: complex, local, comparison
 - Compare: simple, local, comparison
- results
 - low-res / high-density used:
 - simple/local targets
 - (other findings about focus+context vs overview/detail)
- see also horizon graphs study

Pixel-Oriented Methods: VisDB

- how to draw pixels?
 - sort, color by relevance
- local ordering

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994]

VisDB Windows

grouped dimensions

separate dimensions

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994]

VisDB Results: Separate Dimensions

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994]

VisDB Results: Grouped Dimensions

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994]

Visual Layering

- beyond simple use of visual channels
- method variants
 - global compositing: everything superimposed
 - item-level stacking
- major consideration
 - static layers: disjoint ranges in channels safest
 - dynamic/interactive layers: more freedom

Visual Layering: Constellation

- global compositing, dynamic layers
- video

[Munzner. Constellation: Linguistic Semantic Networks. Interactive Visualization of Large Graphs and Networks (PhD thesis) Chapter 5, Stanford University, 2000, pp 87-122. http://graphics.stanford.edu/papers/munzner_thesis]

Glyphs

- compound marks
- macro (small picture) vs micro (texture)

- channel questions
 - separability
 - effectiveness principle: importance matching

[Fig 9. Information Rich Glyphs for Software Management, IEEE CG&A 18:4 1998] [Fig 2. Smith and Grinstein and Bergeron. Interactive data exploration with a supercomputer. Proc. IEEE Visualization (Vis) 1991, p. 248-254]

Questions/Discussion

Experiment: Feedback

- which lecture style works best?
- summarize chapters thoroughly
 - last several lectures
 - if book doing its job, maybe other choices viable!
- summarize lightly
 - more time for other/further ideas/approaches
 - more time for discussion
 - trying this today
- your preferences?

Reading For Next Time

Chapter 6: Multiple View Methods

The Visual Design and Control of Trellis Display. R. A. Becker, W. S. Cleveland, and M. J. Shyu (1996). Journal of Computational and Statistical Graphics, 5:123-155.