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ABSTRACT

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent lupta-
tum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit, sed diam non-
ummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat.

1 INTRODUCTION

Microbacterial communities make up a wide and diverse environ-
ment which accounts for some of the most unexplored biomes in the
world. Metagenomics, the study of the genomic information con-
tained within a community, represents a window with which to view
and explore the diversity and dynamics of these naturally occurring
communities. One of the new emerging concepts in this field is the
distributed nature of metabolism between many different microor-
ganisms within an environment. Metabolism, the life-sustaining
chemical reactions that enable an organism to survive, in higher-
order organisms are often viewed in isolation of other species, how-
ever, it is becoming increasing apparent that these metabolic net-
works in microbacterial communities are distributed and shared be-
tween a number of different organisms in the environment. Or-
ganisms rely upon, and optimize themselves with respect to others
making up a macroscopic biological system. By acknowledging
this macroscopic view and taking a Systems Biology approach, we
can investigate how microorganisms are sharing their metabolism
within the community and how that community changes over time.

To add some formalism to the problem, we can treat microorgan-
isms (taxa) and metabolic pathway steps as nodes in two separate,
though intrinsically related, networks or graphs. The presence of
a specific taxa can be estimated in a sample from the environment
by sequencing genomic material, specifically small ribosomal sub-
unit RNA (16S RNA), a section of the bacterial genome that is well
suited for identification. A collection of sequences are clustered
by multiple sequence alignment into operational taxonomic units
(OTUs) which correspond to one or more closely related microor-
ganisms in a sample. Metabolic reaction steps exist in a pathway
of known overall metabolism with a complex yet defined order of
substrates and products representing the inputs and outputs of each
reaction. The presence or absence of these enzymatic steps can be
inferred via functional genes found in the sequenced environmental
genomes. The PathoLogic algorithm developed by the International
Stanford Research Institute (SRI) can infer the presence or absence
of specific pathway steps, effectively supplying nodes, their con-
necting edges, and their weights in the metabolic graph [14]. OTUs
can be clustered in a hierarchy using correlation algorithms, which
essentially describe edges and weights within a corresponding taxa
graph [15]. The problem is of course to effectively infer the influ-
ence of the taxa graph on the metabolic one, which essentially boils
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down to a version of the Graph Isomorphism problem, a classic NP
problem in computer graphing.

Here we present GraphLinker, an exploratory environment for
the visual comparison of two graphs via their weighted associa-
tions. Gathering inspiration from other graph visualizaton studies,
we use a force-directed layout to take advantage of the positional
visual channel, and a specialized edge encoding to highlight signif-
icant meta-edges, edges that connect nodes from one graph to the
other. We validate the method for use with both a random graph, as
well as a processed metagenomic sample, highlighting taxa present,
taken from the waters of the pacific west coast of British Columbia.

2 RELATED WORK

Problems involving graphs and their visual interpretation have in
some ways existed since the time of Euler. However, the formal-
ism of graph visualization community really grew around yearly
Symposia on Graph Drawing which started in 1992 in Rome. Since
then, research has identified three general overlapping problems:
node and edge occlusion by density, readable edge layouts, and
computational complexity in graph drawing [10]. The intuitive im-
pact of graphs and their cognitive interpretation has unfortunately
been less formally studied when compared to other aspects of visu-
alization like colour. This makes the area more holistic and reliant
on individual usability studies for validation [10].

Many real world graphical datasets, including most biological
ones, have the global property of a large number of highly dis-
tributed clusters with a small average path-length. This is known
as the small-world or power law property in the literature and has
been be shown to occur many different datasets across multiple
knowledge domains, including many biological ones. Recently,
there have been a number of attempts to optimize the visualiza-
tion to graphs having these properties though the specialized use of
force-directed layouts [6]. These forced-based approaches, though
initially too computationally complex and non-deterministic, have
had a number of algorithmic optimizations that make the problem
tractable [10]. More recent developments have been to apply force-
directed approximations to online (live) graphs to facilitate user in-
teraction [7]. Ham and Wijk have used both semantical and geo-
metrical distortions to create scalable, interactive visualizations of
small-world graphs [17].

Another aspect of graph layout has been the visualization of hi-
erarchical clustering. A number of classic layouts are highlighted
by Herman in his review, however, the work of Archambault et. al.
has investigated into the visualization of small-world graphs from a
number of additional angles. In TopoLayout he proposed a multi-
level algorithm that draws undirected graphs based on the topolog-
ical features and improves upon a number of different layout algo-
rithms [5]. Grouse, another visualization environment, tackles the
hierarchical normally shown in a tree layout by collapsing nodes
into concentric meta-nodes with meta-edges and raised the visual-
ization of the graph up the structural hierarchy [4]. Furthermore,
Archambault has recently touched upon graph comparison through
the overlapping of two graphs in difference maps when nodes of the
two graphs being compared exist in the same set of objects [2].

These are all useful and relevant advances, however, to our
knowledge our proposal represents the first attempt at the visual



mapping of two related graphs from different domains. As far as
mapping edges in general, Graph Isomorphism is one of the twelve
classic computational complexity problems proposed by Gary and
Johnson back in their 1979 seminal textbook of the subject [8].
However, it is peculiar in that it remains one of the last to still have
its computational complexity unsolved. It is still unclear if the prob-
lem exists in the set of polynomial or NP-complete problems [12].

The best algorithm to date runs in 2O(nlog(n)) where n is the number
of vertices in an undirected graph [11]. However, despite not having
the complexity of fan exact solution solved, several practical algo-
rithms have been proposed which in most cases run in polynomial
time despite being still exponential in the worst case [16].

Bringing the problem back into biological context, previous at-
tempts to solve a similar mapping of gene presence to pathway
targets have been attempted, however with mixed success, classi-
fying less than 50% of enzymatic genes to a pathway [9]. This
could be due to a number of factors, including deficiencies in the
KEGG pathway database. However, these previous attempts con-
sidered bacterial taxa in isolation as opposed to a Biological System
which would accommodate the distributed metabolism amongst
many taxa. It is becoming increasingly apparent that this latter ap-
proach is may be the more appropriate perspective to take.

3 PROPOSED SOLUTION

The two graphs being compared are drawn in the same view, sep-
arated spatially at opposite ends, with the separate nodes encoded
by two distinct colours. Nodes in each graph were separated by
applying a force-directed layout prior to the inclusion of edges be-
tween the graphs. Meta-edges, weighted edges that connect nodes
between the two graphs, were redundantly encoded by three vi-
sual channels of colour, transparency, and edge width (Figure 1).
Edges within graphs were kept at a standard width and color as the
goal of this visualization is to highlight connections between graphs
through the weighted meta-edges. In addition, as any node in one
graph could potentially connect with any other node in the other,
this would inevitably lead to a large number of edge crossings, so
a prominent visual encoding was required to make sure these edges
were not lost in the masses of others. Colours were chosen to be
suitable for a continuous gradient and to be compatible for individ-
uals with colour blindness [3].

4 IMPLEMENTATION

This implementation of the solution used Cytoscape (Version
2.8.x), a graph viewing visualization environment popular with the
biological community, and was developed as plugin. This was
preferable as numerous other biological plugins have been devel-
oped, in addition to having an environment that is optimized to
handle very large graphs and multiple layouts implemented [1].
Our plugin was implemented in java using the Cytoscape plugin
API[13]. It consisted of two major methods, one that draws graphs
from three input files specifying nodes of both graphs and their con-
nections, and another that specifies the visual encoding specific to
the node and edge attributes.

The force directed layout algorithm implemented internally into
Cytoscape was used as is, however, it is applied first to the two
graphs to be compared without connecting meta-nodes to separate
the graphs. We tried a number of other ways to fool the force-
directed algorithm into separating the two graphs, including creat-
ing many low-weight invisible edges the graphs. This worked well
for a small number of nodes, however, since we need an invisible
edge from every node in one to every node in the other, the addi-
tional edges taxed the force-directed algorithm to the point where
it became intractable. The first approach of applying the force-
directed algorithm to the two graphs prior to adding meta-edges
is imprecise, but it adequately separates the two graphs enough that
it did not hinder finding meta-edges and doing comparisons.

Figure 1: An outline of the visual encoding in GraphLinker. Mi-
croorganisms and their co-occurrences are represented by the green
nodes and standard thin edges. Metabolic pathway co-occurrences
are represented by blue nodes and standard edges. Meta-nodes,
weighted un-directional edges that connect the two graphs, are re-
dundantly encoded by three separate visual channels: colour gradi-
ent, transparency, and edge width. Meta-edges are the wides and
most salient when the underlying association is strong, near 1.0, and
subsequently decreases when the association gets to weak, the cur-
rent visible cutoff being near 0.2

More detail on the specific usage of the plugin can be found in
the README file of the GraphLinker.zip package.

5 RESULTS

GraphLinker was validated on three use cases. The first is a trivial
diagnostic case that is used to ensure that the software was properly
loaded into Cytoscape to showcase the visual encoding, and to test
for force directed separation of highly disconnected graphs (Figure
2). The second is a 100 x 100 node random graph with 200 random
edges to test the separation of the two visual encoding for occlusion
and the ability to discern significant connecting edges between the
two graphs (Figure 3). The third, is a realistic metagenomic sam-
ple taken from the Line-P ocean time-series containing 622 nodes
and 832 edges (Figure 4). It also follows the small-world property
to some degree. In the worst use case our metagenomic samples
would be approximately 1000-2000 taxa against hundreds of po-
tential pathways, which makes this test case a little on the small
side.

Notice in the random graph use case that despite having many
overlapping edges connecting the two graphs we can still discern
the most significant edges due to the combination of visual encod-
ings use to encode them (Figure 3). This is an encouraging result
suggesting that the combination of a linear colour gradient, trans-
parency and edge width is an effective visual encoding and ensures
that significant edges can be seen above the crowd.

The third Line-P example represents our realistic test case. No-
tice that we can still locate significant connections between the
taxa graph (green) and the metabolic pathway graph (blue) by their
strong visual encoding. (Figure 4) Looking up these significant
edges we notice that these are indeed clustering with anaerobic bac-
teria and sulphate reduction, two key indicators that this sample
came from a low oxygen environment. This is an encouraging re-
sult as we can potentially start to follow the patterns of connections
between the two networks; the goal this tool aimed to accomplish.



Figure 2: A simple diagnostic plot showcasing the visual encoding,
the force-directed layout, and ensuring that the Cytoscape plugin was
loaded correctly. One can notice the full spectrum of the meta-edge
encoding through 0.1 intervals from 1.0 to 0.0.

Figure 3: This ’random’ data set of a 100 x 100 graph with 200 ran-
dom edges is used to test the resilience of the visual encoding when
in areas of very dense edges. We can see that strong connecting
meta-edges can still be seen relatively easily despite the edge crowd-
ing.

6 DISCUSSION AND FUTURE WORK

This initial implementation is encouraging in its initial results that
the visual encoding works to some degree, however, it does not
meet all the goals initially set out in the project proposal. There
are four major areas where things could be improved to highlight
comparisons between graphs: edge-management, graph separation

Figure 4: An example of a realistic case from a metagenomic data
set. This dataset consists of approximately 800 nodes with 100 con-
necting edges between the two graphs. We can identify strong con-
necting edges between the taxa graph (green) and the metabolic
pathway graph (blue) by their strong visual encoding. Upon look-
ing up these strong edges we can find clusters of methanogenic and
sulphur-reducing bacteria, something that we expect to find in low-
oxygen environments.

and layout, hierarchical clustering, and general usability/Cytoscape
integration. It is best to take this project as a proof of concept rather
than a fully-fledged visualization environment. Many of these im-
provements are needed to make this jump but are not essential to
making a novel contribution to showing relations between graphs
visually, which is what was focused on.

Like just about all graph visualization projects, one must con-
front the vicious problem of edge crossings, as it is the number one
factor that makes them difficult to read [?]. In GraphLinker, impor-
tant connecting edges were highlighted by a combination of three
visual encoding channels, however, this is a more practical than
elegant solution to the problem. There are a number of different
approaches to solve this problem. Finding a layout that minimizes
edge crossings is known to be NP-complete, though approximate
solutions though rotational and tension based models are known to
be tractable [?]. Edge bundling is another alternative been shown
to be effective. Additionally, edges would be reduced by collapsing
nodes into a hierarchical structure as seen in the Grouse visualiza-
tion environment by Archambault et. al.. A combination of all
of these would likely be ideal, the use could click to expand and
contract the meta-node hierarchy and at the same time reduce the
number of edges incident by bundling.

In GraphLinkers implementation, we staggered the application
of the force-directed layout to get the partial separation of the two
graphs, as an absolute separation between the graphs using hidden
edges proved intractable. An alternative solution is to apply the al-
gorithm to each graph individually and then separate the graphs to
opposite sites of the view. However, this layout doesnt take into
account the connecting nodes, it would be good to find a layout
that highlights them in some ordered manner. A layout that reorga-
nizes the graphs this way would also minimize edge crossings by
arranging nodes such that meta-edge distance is minimized. Such
an algorithm may be implementable in Cytoscape though given the



limited existing documentation, its depreciating API, and the im-
pending overhaul of the structure with the coming update to 3.0, it
would be best for the Cytoscape developers to make their changes
before any additional development.

The collapsing of nodes into hierarchical clusterings would def-
initely be a good development in reducing the number of onscreen
nodes and the number of edge crossings. A sketch of this was
shown in the project proposal, taking inspiration from the work of
Archambault et. al. in the Grouse visualization environment (Fig-
ure 5). This was not approached in this iteration because it is un-
clear if it could be implemented in Cytoscapes current structure. It
is unclear if containment areas could be fashioned to contain nodes,
as well as be meta nodes themselves. There is also limited ability to
hide and show existing nodes in a graph, which would be paramount
in achieving this functionality.

Figure 5: Original Ideas from the Project Proposal. In the project
proposal an idea of encoding hierarchical clustering as proposed to
reduce clutter and increase salience of connecting meta-edges, tak-
ing strong influence from the work of Daniel Archambault et.al.. It is
unclear if this can be implemented in the current Cytoscape (v2.8.x)
API and schema.

Finally, the current usability of GraphLinker is complied from
the almost non-existant by todays standards. It is compiled from the
command-line, with input files in specific positions with specific
names (see README file in GraphLinker.zip package). In order
to turn this into a fully integrated plugin to Cytoscape, it would
have to be fully integrated with the file loader and the local node
and edge attributes displayed. I decided against this again, because
of Cytoscapes impending upgrade. Overdeveloping at this stage
would be wasteful if the entire structure of the program is going to
change.

To conclude, GraphLinker represents a first step to a comparative
graph visualization tool, and can be taken as a proof-of-concept of
the visual encoding and applicability of the problem. Future de-
velopments may or may not continue in Cytoscape depending the
capabilities of the 3.0 update, and so may to a different visual envi-
ronment for development.
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