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Introduction
Micro-bacterial communities make up a wide and diverse environment which accounts
for some of the most diverse and largely unexplored biomes on the planet. Environ-
mental genomics represents a window with which to view and explore the diversity and
dynamics of these naturally occurring communities. One of the new emerging concepts
in this field is the distributed nature of metabolic pathways between the multitude of
different taxa within an environment. In higher order organisms, these pathways are
viewed in isolation of other species, however, it is becoming increasingly apparent that
these networks in the microbiome are distributed in nature between a number of differ-
ent microorganisms; each organism relying on the metabolic processes of others within
a traditionally isolated pathway. However, discovering specifically which taxa are con-
tributing within a metabolic pathway is a non-trivial question that is just beginning to
be investigated.

To add some formalism to the problem, we can treat microbiological taxa and metabolic
pathway steps as nodes in two somehow separate, though related, networks or graphs.
The presence of a specific taxa in an environment can be estimated from genomic reads of
the 16S rRNA protein, using them as a putative identifiers. A collection of reads are clus-
tered by multiple sequence alignment into operational taxonomic units (OTUs) which
correspond to one or more closely related species contained in a sample. Metabolic path-
way steps exist in a known network of overall metabolism with a complex yet defined
order of substrates and products representing the inputs and outputs of each reaction.
The presence or absence of these enzymatic steps can be inferred by via a pattern of ex-
pression detected in specific enzymatic proteins. The PathoLogic algorithm developed
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by the International Standford Research Institute (SRI International) can infer the pres-
ence or absence of specific pathway steps, effectively supplying nodes, their connecting
edges, and their weights in the graph. In the other graph representing taxa, OTUs can
be clustered in a hierarchy using correlation algorithms, which essentially describe the
edges and their weight.1 The problem is of course to effectively infer the influence of the
taxa graph on the metabolic one, which essentially boils down to a version of the Graph
Isomorphism problem, a classic NP problem in computer graphing.

Graph Isomorphism is one of the twelve classic computational complexity problems
proposed by Garry and Johnson back in their 1979 seminal textbook of the subject.2
However, it is peculiar in that it remains one of the last to still have its computational
complexity unsolved. It is still unclear if the problem exists in the set of polynomial or
NP-complete problems.3 The best algorithm to date runs in 2O(

!
nl o g (n)) where n is the

number of vertices in an undirected graph.4 However, despite not having the complexity
of an exact solution solved, several practical algorithms have been proposed which in
most cases run in polynomial time despite being still exponential in the worst case.5,6

Bringing the problem back into biological context, previous attempts to solve a sim-
ilar mapping of gene expression to pathway targets have been attempted, all-be-it with
mixed success, classifying less than 50% of expressed enzymes to a pathway.7 This could
be due to a number of factors, including the KEGG pathway database being incom-
plete at the time with respect to the taxa in question. However, these previous attempts
considered bacterial taxa in isolation, where as distributed metabolism amongst multi-
ple microorganisms may be a more correct perspective to analyze this domain. In our
model, we propose to apply hierarchical clustering to the nodes in each graph for two
main reasons. The first, is to simplify the data set to gather a simpler better overview of
the global relationships. The second, and more important, reason is to include clusters
of prospective taxa and pathway steps into the mapping of one graph on to the other. It
is thought that mappings which include multiple levels of the data hierarchy will likely
be more successful, and thus reduce the risk of having the mapping fail merely because
it was looking at too low a level.

The analysis of this mapping is still exploratory in nature, and at this outset it is dif-
ficult to be specific of the kinds of interaction that will be required in the visualization.
Nonetheless, this proposal specifies the best guess based on previous work in the visual
encoding of small world graphs and previous biological tools that have graph interac-
tion schemes.8 For the purposes of CPSC 533C, the scope of this project is to explore
methods for visually encoding weighted associations between two graphs in the context
of graph isomorphism and microgenomic data.
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Personal Experience
As a masters student in the UBC Bioinformatics training program, the task of relating
the microbacterial communities with their distributed metabolic pathways is a key part
of my research interest in studying microbiome genomics as a whole. Currently in the
Hallam Lab, we are finalizing a pathway prediction pipeline using microbacterial ge-
nomic expression data based on the PathoLogic algorithm produced by bioinformatics
researchers at SRI, International.9 Additionally, investigating bacterial community struc-
ture based on presence absence data using a number of different mathematical models
based on the properties of small world graphs. Both of these research directions make
up the two sets of data essential to the visualization task, making this project very uni-
fying in terms of my research goals. Additionally, the task of visually describing graph
isomorphism is an interesting problem that would be relevant any data set that requires
the comparison of two related graphs representing different domains.

Proposed Information Visualization Solution

A Mathematical Description of the Graphs
Let there be two graphs, G and G′, with nodes, n and n′, edges, e(ni , nj ) and e ′(n′i , n′j ),
and clusters c(n1, n2, ...) and c ′(n′1, n′2, ...). Let a connecting edge between graphs be ex-
pressed by ec (ni |ci , n′j |c ′j ). In all above cases, let i #= j . Clusters of nodes or clusters
from when classified by some general hierarchical clustering algorithm. See Figure 1 for
a more visual description of the layout.

Biological Mapping
A quick summary showing the mapping of the graph to their biological features.

G Graph of putative taxa in the form of OTUs: a node, n, represents the OTUÕs
presence in the sample set being displayed.

G′ Graph of putative metabolic pathways: a node, n′, represents a metabolic step called
by PathoLogic

e(ni , nj ) Edges between nodes i and j of graph G. This represents a co-occurrence
between two OTUs across samples within an environment. It could be weighted
or unweighted depending on the dataset.
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OTUs (Taxa) Metabolic Pathway

Figure 1: A schematic describing the graph isomorphism problem and its mapping into
the biological domain of operational taxonomic units (blue) and metabolic pathway
units (red). Notice that edges within a graph are solid, while meta-edges connecting
the two graphs are dotted. Clusters or meta-nodes represent a hierarchical clustering on
a set sub-set of nodes, but can also treated as a target for meta-edges. These clusters rep-
resent groups of putative co-occurring bacteria in the OTU graph, while they represent
a cohesive metabolic pathway in the other.

e ′(n′i , n′j ) Edge between nodes i and j of graph G′. The edge represents a connection
between two metabolic steps. It could be weighted or unweighted depending on
the dataset.

c(n1, ..., nk) A cluster or meta-node of k nodes of graph G. A cluster of correlation
between taxa; a putative microcommunity.

c ′(n′1, ..., n′k) A cluster or meta-node of k nodes of graph G′. A cluster of correlation
between metabolic steps; a putative cohesive metabolic pathway.

ec (ni |ci , n′j |c ′j ) A connecting or meta-edge between a node or cluster of graph G to a
node or cluster of G′. Weight determined by the weighting algorithm proposed
by Ogata et. al. This edge suggests a putative association between OTUs in G to
metabolic steps in G′
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Visual Encoding
The two graphs will be displayed in the same view though separated by some minimal
central whitespace (Figure 1). We initially expect the nodes to be laid out in a force-
directed graph according to edge weight and have different colours according to the
graph they come from for clarity. In first schematic, Figure 1, nodes in the the OTU
graph are blue and taxonomic nodes are red. Edges connecting nodes within a graph
straight, full lines, while meta-edges between graphs are dotted. Hierarchical clusters are
represented by background ellipses containing all child nodes beneath them. In our bio-
logical problem, one layer of hierarchical clustering might be sufficient for the problem,
however, many other problems might require higher levels. In which case, the hierarchy
might be represented by nested concentric ellipses akin to the Grouse hierarchy visual-
ization tool (Figure 2).10

OTU graphs can contain thousands of nodes, while in metabolic pathways there are
likely to be hundreds. This makes this a moderately difficult graph drawing problem
in terms of screen real estate. Two noise/data reduction methods are proposed, collaps-
ing meta-node clusters and ’ghosting’ or removal of nodes and edges that do not have
meta-edges (Figure 2). This way the only edges and nodes that remain are those that
connect the two graphs, highlighting the connections found. The connections are also
highlighted via the thickness of the lines, encoding the strength of the particular associ-
ation between the two nodes or clusters. This is further improved by moving all meta
edges and their nodes along the centre of the screen, giving them a ’front and centre’
visual display.

It is unclear how connected the our data is going to be, however, it is likely that
they will be ’small world’ graphs with a high clustering index and a small average path
length. Since edge crossing and density are the primary impediments people have when
analyzing graphs, the replacement of many weak edges with one edge in a cluster might
be important.11 User interaction and movement, important though not within the main
scope of this proposal, will likely be limited to basic panning and zooming over the
contents. Other features beyond scope, inspired by the Prawn visualization display,
include guaranteed visibility of selected nodes at the edge of the frame at their tangential
location, text scaling to ensure ease of reading, and when expanding a meta-node or
cluster, moving the surrounding nodes such that this expansion does not occlude them
with an occlusion avoidance algorithm.12

One should note that this represents the initial specification of the design and visual
encoding given the current understanding of the problem. It is by no means permanent
and is quite likely, given the exploratory nature of the data, to change as development
continues due to certain programming, display, or computational constraints that arise.
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Figure 2: A proposed visual encoding for graph comparison. Graphs are separated via
some central whitespace, however, due to the likely number of nodes of OTU and
metabolic networks some simplifying measure are propose. Meta-nodes or clusters in
each graph can be scaled down by removing the internal connecting edges and scaling
the size of all nodes proportionately down (bottom left). The node positions however
remain relative to their original configuration with edges as to provide a thumbnail into
their underlying structure. To highlight edges and nodes that are connected between the
two graphs, all other nodes are ghosted and nodes connected by meta-edges are brought
to the centre of the screen (top right). Both cluster-scaling, and node ghosting can be
combined to further highlight the connections between the two graphs.

Proposed Implementation
The open source visualization environment, Cytoscape, is a popular framework within
the biological community for complex network analysis, and is likely a first chose for
the implementation.13 A number of biological plugins have already been implemented
with large support from the scientific community.8 Cytoscape, is also good in that it has
both PC and Mac implementation as deployment to both is important in the case of
the biological systems community. Recently, Cytoscape has also developed a web based
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version, Cytoscape Web, for web deployment. However, it is unclear if this would be
effective for our needs, considering the size of our graphs that we are likely to require.14

The fallback implementation, should it be required, is to have basic functionality
demonstrated in Processing, a visualization development package written in Java. Pri-
ority will be placed on showing the meta-nodes connecting the two graphs as this is the
focus of the visualization. Expanding/Contracting hierarchies and specializing the visu-
alization for small world graphs will likely help, but the concepts have been well thought
out in previous work.10,11,15−17

Schedule & Milestones
Here we outline the schedule for development of GraphLinker.

Previous Work
The using graphs to interpret information and their visualization issues has in some ways
always existed from the time of Euler. However, the formalism of the graph visualiza-
tion community really grew around yearly Symposia on Graph Drawing which started
in 1992 in Rome. Since then, research has identified three general overlapping problems
of graph drawing: node and edge occlusion by density, readable edge layout, and com-
putational complexity of drawing algorithms.18 The intuitive impact of graphs and their
cognitive interpretation has unfortunately been less formally studied when compared
with other aspects of visualization like colour. This makes the area more holistic and
reliant on usability studies for validation.18

Many real world graphical datasets have the global property of large number of
highly distributed clusters with a small average path-length. This is known as the ’small
world’ or power law property in the literature, and has been be shown to occur many
different datasets across multiple knowledge domains. Recently, there have been a num-
ber of attempts to optimize the visualization to graphs having these properties though
the specialized use of force-directed layouts.11 These forced-based approaches, though
initially too computationally complex and non-deterministic, have had a number of
proposed algorithmic optimizations that make the problem tractable.18 More recent de-
velopments have been to apply force-directed approximations to online (live) graphs to
facilitate user interaction.19 Ham and Wijk have used both semantical and geometrical
distortions to create scalable, interactive visualizations of small world graphs.16

Another aspect of graph layout has been the visualization of hierarchical clustering.
A number of classic layouts are highlighted by Herman in his review, however, the work
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Milestone Date
1. Become accustomed with the most recent version of Cytoscape, im-
plementation of previous plug-ins etc.

October 29th

2. Adding edge weights to edges, displaying two separate graphs at the
same time.

November 1st

3. Cluster nodes by containment. November 4th
4. Linking nodes on two graphs by edges of a different style. Change
edge width due to weight of association.

November 6th

5. Bring meta edges and associated nodes to the centre, sort vertically
by edge weight.

November 8th

6. ’Ghost’ or remove nodes and edges not associated with meta-edges. November 10th
7. Have basic demonstration of functionality ready to go for project
update presentation.

November 12th

8. If four of the last 7 tasks are not complete, change to ’Plan B’ of
implementing basic functionality in Processing.

November 15th

9. Basic Pan & Zoom should work. Keep highlighted nodes in the main
view at a tangential angle.

November 18th

10. Have all meta-edge functionality working. Move on to extra features
of multi-nested hierarchical clustering.

November 20th

11. Collapsing and expanding clusters or meta-nodes. November 22nd
12. Implement occluding avoidance algorithm when expanding or col-
lapsing nodes

November 25th

13. Final extras and features isolated. Have second demonstration
model ready to present.

November 30th

14. Begin final writeup. Start replacing theoretical data with legitimate
calls from biological sources.

December 1st
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of Archambault et. al. has investigated into the visualization of small world graphs from
a number of additional different angles. In TopoLayout he proposed a multi-level al-
gorithm that draws undirected graphs based on the topological features and improves
upon a number of different layout algorithms.17 Grouse, another visualization environ-
ment, tackles the hierarchical normally shown in a tree layout by collapsing nodes into
concentric meta-nodes with meta-edges and transforms the visualization of the graph up
the structural hierarchy.10 Furthermore, Archambault has recently touched upon graph
comparison through the overlapping of two graphs in difference maps when nodes of the
graph exist in the same set of objects.15 These are all useful and relevant advances, how-
ever, to our knowledge this proposal represents the first attempt at the visual mapping
of two related graphs from different domains.
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