WHAT IS TIME SERIES DATA?
- A value over time
- not too useful
- A sequence of time point + value pairs
 - <t0, v0>
 - <t1, v1>
 - <t2, v2>
 - ...
 - <tn, vn>

WHAT IS TIME SERIES DATA?
- \(t_i \leq t_{i+1} \)
 - not \(t_i < t_{i+1} \)
- Low resolution of time
- Errors
- Discontinuities
- Multiple sources of measurement

WHAT IS TIME SERIES DATA?
- common examples:
 - financial data
 - electrocardiograms
 - meteorological data
 - production rates
 - ...

WHAT IS TIME SERIES DATA?
- Doesn't need to be a numerical value over time
 - routes
 - position over time
 - schedules
 - Activity over time (resource focused)
 - resource over time (activity focused)

PAPERS COVERED
- Interactive Visualization of Serial Periodic Data
 - John V. Carlis and Joseph A. Konstan
- Visualizing and Discovering Non-Trivial Patterns in Large Time Series Databases
 - Jessica Lin, Eamonn Keogh, Stefano Lonardi
- Time-series Bitmaps: A Practical Visualization Tool for working with Large Time Series
 - Nitin Kumar, Nishaanu Lolla, Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratananumhatana

TIME SERIES DATA
- Initial Approach: Calendars (tabular layouts)
- Calendar (tabular) layouts exaggerate distance between adjacent periods
- Solution: layout the series in a spiral

TASKS WITH TIME SERIES DATA
- Finding patterns
 - periodic vs non-periodic
 - finding known patterns
 - searching
 - sequence matching
 - classification
 - finding common unknown patterns
 - motif discovery
 - clustering
 - finding rare patterns
 - anomaly detection
- Finding trends
 - general increasing/decreasing
 - abrupt changes
 - anomaly detection
 - correlation between variables

PAPER 1
- Interactive Visualization of Serial Periodic Data
 - John V. Carlis and Joseph A. Konstan

PERIODIC DATA
- "Pure" periodic data
 - each period has identical duration
 - vs event anchored periodic data
 - periods start following some event
 - time between events may be inconsistent
 - Focus is on pure periodic data

PERIODIC DATA
- The end of one period is close to the start of the next.
 - Distance from center is time
 - Angle is time relative to start of period
 - Values at time points must be encoded some other way
 - same with tabular layouts
PERIODIC DATA
- dot size
- line width

PERIODIC DATA
- glyph

PERIODIC DATA
- good:
 - space efficient
 - neighbouring points are always near each other
 - easy to tell where a point is within a period
- bad:
 - points within the same period may be very far apart
 - inconsistent density
 - can't display many variables
 - glyph occlusion
 - bewildering 3D views

Paper 2 & 3
- Visualizing and Discovering Non-Trivial Patterns in Large Time Series Databases
 - Jessica Lin, Eamonn Keogh, Stefano Lonardi
- Time-series Bitmaps: A Practical Visualization Tool for working with Large Time Series
 - Nitin Kumar, Nishanth Lolla, Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanamahatana

Pattern Detection
- Good:
 - Fast method for approximating time series as symbolic strings
 - Easy to see common/uncommon subsequences with suffix trees
 - Easy to compare multiple time series with bitmaps
- Bad:
 - Unclear how to determine key parameters; (1) length of sliding window, (2) # of intervals to use, (3) alphabet size

Pattern Detection
- Observation:
 - Sequence matching and pattern detection is a lot easier for strings
- Symbolic Aggregate approximation (SAX)
 - Dimensionality reduction

Pattern Detection - SAX
- Linear trends could make patterns meaningless
 - Could get patterns like aaaaabbbbbbccccc.
- Use a short sliding time window
 - Symbols are equiprobable within the time window
 - Produces a set of strings instead of just one

Pattern Detection - VizTree
- VizTree Idea:
 - The set of strings produced by SAX can be encoded as a suffix tree
 - Using a time window of length, 2 cbabbbaaacc becomes {cb, ba, bb, bb, ba, aa, ac, cc}

Pattern Detection - Time Series Bitmaps
- Instead of using node-link diagrams to represent a suffix tree we can create a treemap
 - Encode # of matches as colour of each cell
- Restrict # of cells to a small value (~16)