
Rolf Biehn

 Visualization of a software systems based on their
structure, history, or behavior

 Today’s presentation:
◦ Program Execution Traces
◦ Source Code History
◦ Program Optimization

David Lorenz et al.

 Techniques to visualize the execution flow and
execution patterns

 Input is call traces from instrumented code

 Understand program execution flow in order to
program or debug it

UML Execution

+Scales better than directed graphs
-Vertical Space is consumed quickly
-Somewhat difficult to read

UML Call Graph
Tree

+Easier to read than an UML diagram (no “bouncing
between axis”)

+Horizontal & Vertical space is used more efficiently
+Enables better user interaction

•Flattening is useful for System libraries
•Can collapse and expand nodes
•Can search & filter (with expressions)
•Panning & Zooming also supported

• 3D box indicates a collapsed node
• Colors correspond to a class
• ID #s represent identity of the object

• 3D box used to show pattern
• Saves lots of space in call traces
• Can expand/contract
• Number (6X) shows number of repetitions
• Also applies to recursion

 Bunch of dimension:
◦ Identity, Class Identity, Message Structure, Depth

Limiting, Repetition, Polymorphism, Associatively,
Commutatively

 Create a hash function for each leaf node which
considers these dimensions

 Create a recursive hash function which considers
its children in the call graph

 Put all nodes into a dictionary
 How long does it take? Memory concerns?

 Understand program execution flow in order to
program or debug it
◦ (B) Looks like it should work, if implemented carefully
◦ How to navigate from high-level if I don’t know precisely

what I want to see?
◦ What about multi-threading?
◦ How well does it scale? What if number of Classes

exceeds distinguishable colours?

Alex Telea, et al.

 CVSScan is part of a larger suite of tools called
Visual Code Navigator

 Provides information of the history of check-ins

 Answer the following questions
◦ Who performed these modifications of the code
◦ Which parts of the code are unstable?
◦ How are changes correlated?
◦ How are the development tasks distributed?
◦ What is the context in which a piece of code appeared?

 All encoded using colors
◦ Author
◦ Content (block, comment, references)
◦ Evolution (add/remove/delete/unchanged)

Global Line Position allows Left
to Right reading

 Informal Studies (not targeted)
 15 minutes of training
 Silent Observer
 Why not use a real-world case? (i.e. trying to fix a

bug)
 No control
 No negative/constructive comments

 Script file from the FreeBSD
 “Here they tuned the regular expressions”
 “Apparently a major change took place in the

middle of the project. It mainly affected the
check_version procedure”

 Rated as a success

 C file socket implementation of the X Transport
service layer

 The user recognized 2 authors performed most of
the changes and the area of heavy modification

 Overall, the user did not have a very clear image
of the file’s evolution

 Who performed these modifications of the code?
◦ (E) Hard to Track exactly “who is pink?”

 Which parts of the code are unstable?
◦ (B) Seems o.k. for this purpose

 How are changes correlated?
◦ (F) Correlation to other files in same check-in?
◦ Correlation to other changes in the same file?

 How are the development tasks distributed?
◦ (D) Although we can see distribution, precisely who

wrote what is difficult to figure out
 What is the context in which a piece of code

appeared?
◦ (F) Hard to link back to changelist
◦ Branching history?

Chris Stolte et al.

 Program called Rivet
 Help optimization on multi-processor architectures

 Optimize
◦ Know where to look
◦ Drill into the details
◦ Know the context – map back to the source code

somehow

 Pipelining: overlap the execution of multiple
instructions within a functional unit

 Multiple Functional Units: exploit instruction level
parallelism (ILP)

 Out-of-Order Execution: increase possibility of
ILP

 Speculation: guess and fetch ahead

 Empty/Icache: An instruction cache miss
 Exception/Flush : An instruction requires

sequential execution
 Load/Store: Waiting for memory
 Issue/Functional Unit: Waiting for a functional

unit to complete execution

 Know where to look.
◦ (B) Great use of overview-plus detail display
◦ But is this really the best entry point?
◦ What about filters?

 Look at the details
◦ (A) Looks good

 Know the context – map back to the source code
somehow
◦ (A) Looks good
◦ Next step link to IDE?

