Software Visualizations
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What is Software
Visualization?

» Visualization of a software systems based on their
structure, history, or behavior

» Today’s presentation:
- Program Execution Traces
- Source Code History
> Program Optimization




Execution Patterns In
Object-Oriented
Visualization

>> David Lorenz et al.




What is it?

» Techniques to visualize the execution flow and
execution patterns

» Input is call traces from instrumented code




Motivation

» Understand program execution flow in order to
program or debug it




UML Visualization




UML Discussion

+Scales better than directed graphs
-Vertical Space is consumed quickly
-Somewhat difficult to read




UML Visualization




Execution Pattern Discussion

+Easier to read than an UML diagram (no “bouncing
between axis”)

+Horizontal & Vertical space is used more efficiently
+Enables better user interaction
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Figure 10: Schematic view of underlaying

Flattening is useful for System libraries
*Can collapse and expand nodes

*Can search & filter (with expressions)
*Panning & Zooming also supported
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* 3D box used to show pattern

« Saves lots of space in call traces

« Can expand/contract

* Number (6X) shows number of repetitions
 Also applies to recursion




How to detect pattern?

» Bunch of dimension:

- ldentity, Class ldentity, Message Structure, Depth
Limiting, Repetition, Polymorphism, Associatively,
Commutatively

» Create a hash function for each leaf node which
considers these dimensions

» Create a recursive hash function which considers
its children in the call graph

» Put all nodes into a dictionary
» How long does it take? Memory concerns?




Evaluation

» Understand program execution flow in order to

program or debug it

- (B) Looks like it should work, if implemented carefully

- How to navigate from high-level if | don’t know precisely
what | want to see?

- What about multi-threading?

- How well does it scale? What if number of Classes
exceeds distinguishable colours?




CVSscan: Visualization
of Code Evolution

>> Alex Telea, et al.




What is it?

» CVSScan is part of a larger suite of tools called
Visual Code Navigator

» Provides information of the history of check-ins




Motivation

» Answer the following questions

- Who performed these modifications of the code
> Which parts of the code are unstable?
- How are changes correlated?

- How are the development tasks distributed?
- What is the context in which a piece of code appeared?




Dimensions to Show

» All encoded using colors
> Author
- Content (block, comment, references)
- Evolution (add/remove/delete/unchanged)
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Figure 2 Global line position and corresponding graph
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Global Line Position (2)
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Global Line Position allows Left
to Right reading



Multiple Views
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2 Ways to Display Code
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Figure 11: Two-lavered code view




Use Case Validation

» Informal Studies (not targeted)

» 15 minutes of training

» Silent Observer

» Why not use a real-world case? (i.e. trying to fix a

bug)
» No control

» No negative/constructive comments




Use Case #1

» Script file from the FreeBSD
» “Here they tuned the regular expressions”

» “Apparently a major change took place in the
middle of the project. It mainly affected the
check_version procedure”

» Rated as a success




Use Case #2

» C file socket implementation of the X Transport
service layer

» The user recognized 2 authors performed most of
the changes and the area of heavy modification

» Overall, the user did not have a very clear image
of the file’s evolution




Demo




Evaluation

» Who performed these modifications of the code?
- (E) Hard to Track exactly “who is pink?”

» Which parts of the code are unstable?
- (B) Seems o.k. for this purpose

» How are changes correlated?
- (F) Correlation to other files in same check-in?
o Correlation to other changes in the same file?




Evaluation

» How are the development tasks distributed?

- (D) Although we can see distribution, precisely who
wrote what is difficult to figure out

» What is the context in which a piece of code
appeared?
- (F) Hard to link back to changelist
- Branching history?




Visualizing Application
Behavior on Superscalar
Processors

>> Chris Stolte et al.




What is it?

» Program called Rivet
» Help optimization on multi-processor architectures




Motivation

» Optimize
> Know where to look
> Drill into the details

- Know the context — map back to the source code
somehow




Main Optimization
Techniques

» Pipelining: overlap the execution of multiple
instructions within a functional unit

» Multiple Functional Units: exploit instruction level
parallelism (ILP)

» Out-of-Order Execution: increase possibility of
ILP

» Speculation: guess and fetch ahead




What the program tracks

» Empty/lcache: An instruction cache miss

» Exception/Flush : An instruction requires
sequential execution

» Load/Store: Waiting for memory

» Issue/Functional Unit: Waiting for a functional
unit to complete execution




We are able to focus the area of interest to The instruction mix chart lets us see what
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Dependencies appear as yellow

lines between instructions
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The source code view shows that this

corresponds to a tight loop within the

application.
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Evaluation

» Know where to look.
- (B) Great use of overview-plus detail display

- But is this really the best entry point?
- What about filters?

» Look at the details
> (A) Looks good
» Know the context — map back to the source code
somehow
> (A) Looks good
- Next step link to IDE?




Questions?




