Software Visualizations

Rolf Biehn

What is Software
Visualization?

» Visualization of a software systems based on their
structure, history, or behavior

» Today’s presentation:
- Program Execution Traces
- Source Code History
> Program Optimization

Execution Patterns In
Object-Oriented
Visualization

>> David Lorenz et al.

What is it?

» Techniques to visualize the execution flow and
execution patterns

» Input is call traces from instrumented code

Motivation

» Understand program execution flow in order to
program or debug it

UML Visualization

UML Discussion

+Scales better than directed graphs
-Vertical Space is consumed quickly
-Somewhat difficult to read

UML Visualization

Execution Pattern Discussion

+Easier to read than an UML diagram (no “bouncing
between axis”)

+Horizontal & Vertical space is used more efficiently
+Enables better user interaction

iy |]
—[n]] 1 —={D]
Figure 9: Schematic view of flattening
~[a -3 |2 B[] -AB —a Bl
.y
—[o] (o] (o] —(o]

Figure 10: Schematic view of underlaying

Flattening is useful for System libraries
*Can collapse and expand nodes

*Can search & filter (with expressions)
*Panning & Zooming also supported

next() | “
e —— ©
<90 —@—i @ 7"

6

updateObserver()

——————————————————————————
e B

cur() “
updateObserver() “
——————————————————————————————

« 3D box indicates a collapsed node
 Colors correspond to a class
e |D

#s represent identity of the object
| \\ s

next() : -
e ———

— I
updateObserver
UPCaeSILSSIVOI) NN p—

6X

* 3D box used to show pattern

« Saves lots of space in call traces

« Can expand/contract

* Number (6X) shows number of repetitions
 Also applies to recursion

How to detect pattern?

» Bunch of dimension:

- ldentity, Class ldentity, Message Structure, Depth
Limiting, Repetition, Polymorphism, Associatively,
Commutatively

» Create a hash function for each leaf node which
considers these dimensions

» Create a recursive hash function which considers
its children in the call graph

» Put all nodes into a dictionary
» How long does it take? Memory concerns?

Evaluation

» Understand program execution flow in order to

program or debug it

- (B) Looks like it should work, if implemented carefully

- How to navigate from high-level if | don’t know precisely
what | want to see?

- What about multi-threading?

- How well does it scale? What if number of Classes
exceeds distinguishable colours?

CVSscan: Visualization
of Code Evolution

>> Alex Telea, et al.

What is it?

» CVSScan is part of a larger suite of tools called
Visual Code Navigator

» Provides information of the history of check-ins

Motivation

» Answer the following questions

- Who performed these modifications of the code
> Which parts of the code are unstable?
- How are changes correlated?

- How are the development tasks distributed?
- What is the context in which a piece of code appeared?

Dimensions to Show

» All encoded using colors
> Author
- Content (block, comment, references)
- Evolution (add/remove/delete/unchanged)

Global Line Position

version V; version V., | version V,

. s = . : S = 3-1! = o ge — .
Olr.tl- l'|o-nt --—'lol-r-vlj.- 3: . e
1 int j = 2; 94 int h = 3; |4 int j = 2; Unep?5|t1°n

I i = = 21 in file

12 int 3 2; |

1 1
g int 1 = 1; | int 1 = 1; | .

o — . | : _ .| Globalline
N . _ 1 imch =437, dnt h =3 sition
2 int 3 = 27 int 3 = 2;) int - = Z;

| |

T I

| |

| |

Figure 2 Global line position and corresponding graph
analogy

Global Line Position (2)

—]
Legend | =8 Constant line -} New lines

Discrete time (versions) Discrete time (versions)
Deleted
Lines to be } lines
inserted
Local Line Position Global Line Position
a) b)

Global Line Position allows Left
to Right reading

Multiple Views

metnric
- o — ~
vie
- = - | i
| |] 111
|
clace TIAR:

FEs = ~Ll: CErnses, Sversiond = splic Jlad,
Jast 3f wafCrixis
live = <FILE": I F The file wat WOT cechemaz D0A
pre = amden jdicen, NITNTAIENT) .

azt 3 |Spa= »= O|:

ar Jdeag o S LA ETRars

pCite StoeTicesccs
cotexnill »

code view

Figure 9: Multiple code views in CVSscan

metric
view

2 Ways to Display Code

——— " evolution
SeeiiEia 8 view

mla(sn

i€ ('ibareid ¢5
printf(§¥adld # Sov that we 'ze definitely suce

genuan(l); B to 3awe tceid's 33 3t, unexpané
¢ | 3 3e33g checked in.
fie_wy CLIeCifllenses) iF 1cfg:l

1
Ignaxe verzion mismatchas (NFC speax n dien
1€ (f1astapl |
tecuen (D)
| B

v
(Scnaze, Svessiox| = split nc:.l

td

Figure 11: Two-lavered code view

Use Case Validation

» Informal Studies (not targeted)

» 15 minutes of training

» Silent Observer

» Why not use a real-world case? (i.e. trying to fix a

bug)
» No control

» No negative/constructive comments

Use Case #1

» Script file from the FreeBSD
» “Here they tuned the regular expressions”

» “Apparently a major change took place in the
middle of the project. It mainly affected the
check_version procedure”

» Rated as a success

Use Case #2

» C file socket implementation of the X Transport
service layer

» The user recognized 2 authors performed most of
the changes and the area of heavy modification

» Overall, the user did not have a very clear image
of the file’s evolution

Demo

Evaluation

» Who performed these modifications of the code?
- (E) Hard to Track exactly “who is pink?”

» Which parts of the code are unstable?
- (B) Seems o.k. for this purpose

» How are changes correlated?
- (F) Correlation to other files in same check-in?
o Correlation to other changes in the same file?

Evaluation

» How are the development tasks distributed?

- (D) Although we can see distribution, precisely who
wrote what is difficult to figure out

» What is the context in which a piece of code
appeared?
- (F) Hard to link back to changelist
- Branching history?

Visualizing Application
Behavior on Superscalar
Processors

>> Chris Stolte et al.

What is it?

» Program called Rivet
» Help optimization on multi-processor architectures

Motivation

» Optimize
> Know where to look
> Drill into the details

- Know the context — map back to the source code
somehow

Main Optimization
Techniques

» Pipelining: overlap the execution of multiple
instructions within a functional unit

» Multiple Functional Units: exploit instruction level
parallelism (ILP)

» Out-of-Order Execution: increase possibility of
ILP

» Speculation: guess and fetch ahead

What the program tracks

» Empty/lcache: An instruction cache miss

» Exception/Flush : An instruction requires
sequential execution

» Load/Store: Waiting for memory

» Issue/Functional Unit: Waiting for a functional
unit to complete execution

We are able to focus the area of interest to The instruction mix chart lets us see what

2000 cycles -- few enough cycles that we @ types of instructions are in the pipeline
can use animation for further investigation. during the time interval of interest.

et

i { ﬁ 1000000
- Exception/Flush ' oad/Store - No Stall - Empty/Icachd - Issug/Functional Unit

There are periods of increased The overview displays stall and

@ pipeline stall throughout the @ throughput information for the
execution entire execution.

Dependencies appear as yellow

lines between instructions

Integer

Decade Unit

- Reorder Buffer
addiu a2,a2,-4 |

| nop —
duuu i vi,dl cvt.s.w $£22,$f22
div.s
madd.s

div.s
madd.s
mov.s $f12,$f22
¢ 20,5 $f0,$f12
[bett 0x10078560 |
TIweL $Fuuy)
clts

belf addiu s0,50,4

Fetch Buffer Branch | addiu 54,54,1
— blez v0,0x10008558 |

If an instruction is speculated,
its border is orange

addiu s3,53,4

addiu a2,a2,-1
Jal 0x10008500
mov.s $f12,$f22
_— sll at,a2,2

| addu at,at,al
IL Iwcl $f0,4(at)
]

. |] c.eq.s §f0,$f12

addu vp,a2,a3
Floating Point |evivez !

J sl vRvo,2
\ b cut.s.w 5f22,$f22 beit 0x40008560
\ / lwel $1,0{v1)
cC.E.S
// - sl a2,v0,2 L

addu a0,a2,al

el

Floating-Point
Integer

Instructions not yet completed
[] Branch

appear faded in the reorder
I Load/store buffer

The instruction which must
graduate next is indicated by a
yellow border and red arrow

1=hrkPoint - + 1;
bvalsr - 1] = 0.0;
for (s =r-2; 8 »=0; 5--

1t4;
if {140

omega = 0;
else

omega = (u - kw[i]) / (kv[i 41 - 1] - kw(i]);
bvals[s + 1] = hvals(s + 1] + (1 - omega) * bvals[s];
bvals[s] = omega * hvals(s],

Mo}

76 [/t

17 * Compute derivatives of the basis functions Bi, k(u)'

I

79 static void

80 BasisDerivatives(float u, long brkPoint, float * kv, long k, float * dvals §
81 | f

The source code view shows that this

corresponds to a tight loop within the

application.

=)=
|

—
é

for (r = 2; r <= k;

Fetch Buffer

i = brkPoint r+1;
bvals[r - 1] = 0.0;
Tora(sE=Rr =z si=i()a =

if (i

omega = 0;

» 59 omega = (u - kv[i]) / (kv[i +r - 1] -
70 bvals[s + 1] = bvals[s + 1] + (1 - omega)
71 bvals[s] = omega * bvals[s]:

I Floating-Point
[Integer

[Branch
[

Load/Store

Aol il oot b il -

120000 111y | G o 0 U0 GAR T OO0 (00 oF d 00 o (00T (VR 0T N Iim

100000

series of floating point inst
memory references.

Branch

Floating Point |
B movn.s $f5,$f4,t1

@ We select a single cycle in this area of

interest and start animation from this cycle.

——l .

The pipeline view shows that there
Decade Unit @ are cascading dependencies between a

ructions and

mul.s

swcl $f2,0(t0)
swcl $f0,4(t0)
movn a0,v0,tl |
[addu atatd |
movn at,al,
lwcl $f1,0(a0)
Iwcl $f0,0(at)
sub.s
—r—]
sub.s
mov.s $f10,$f5
mov.s $f1,$f0
movn.s
movz.s
div.s
movn.s
Iwcl $f9,0(at)
sub.s

|

e rrrors

i BIR 122000

— — —

150000

1

I cxception/Flush I Load/Sigs

[No stall I cmpty/Icache ~]

The timeline view reveals periodic
@ phases of execution, one with very
low throughput.

1000000

Issue/Functional Unit

We inspect the transition between phases

@ in the instruction mix and see plateaus of
floating point instructions corresponding to
the low throughput regions.

Evaluation

» Know where to look.
- (B) Great use of overview-plus detail display

- But is this really the best entry point?
- What about filters?

» Look at the details
> (A) Looks good
» Know the context — map back to the source code
somehow
> (A) Looks good
- Next step link to IDE?

Questions?

